LAGRANGE MULTIPLIERS




Let’s start with a simple surface, z=f(x,y).

¥
o
G
DL
D
“*’#1#** 4’
G




Clearly, this surface has a minimum point.
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Now, down in the xy-plane, let's add a curve,
g(x,y)=c.
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We can think of this curve as a level curve for a
more general surface graph, g=g(x.,y).
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We can also think of this curve as representing a
constraint on the values for x and y that we can plug
Into our function z=f(x,y).




If we restrict the domain of z=f(x,y) to the curve
g(x,y)=c, then the graph that results Is just a curve
lying on our original surface.
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In this particular case, it's easy to see that this curve

has its own minimum point.
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It's also easy to see that there is a contour, z=k, that
touches our curve at that minimum point.
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If we look at the level curve for this contour, we see
that it Is tangent to the curve g(Xx,y)=c In the xy-plane.
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Hence, our level curve and g(x,y)=c have a common
tangent line in the xy-plane.
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Let’s think about what this means.
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It must follow that both the gradient of z at
this point and the gradient of g at this point are
perpendicular to that tangent line.




Consequently, the gradient of z and the gradient of
g, both evaluated at this point, are parallel.




Therefore, Vi =A4V(g
:>(zxf+ zy]):/l(gxf+ gy])
=27, =40, & z,=44,
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To find the the coordinates of the extreme point, you
now just need to figure out how to solve the system
of equations below.
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GOOD LUCK!!
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Lagrange's Theorem: Letf and g have continuous first
partial derivatives such that f has an extreme value at an
Interior point (X,, Y,) on a smooth constraint curve g(x, y) =c.

1T Vg(Xy,Y,) # 0, then there is a real number A such that
VI (%1 ¥0) =AVA(X,. Yo).



Lagrange's Theorem: Let f and g have continuous first
partial derivatives such that f has an extreme value at an
Interior point (X,, Y,) on a smooth constraint curve g(Xx, y) =c.

1T Vg(Xy,Yy) # 0, then there is a real number A such that
VI (%1 Yo) = AVA (X, Yo)-

PROOF: Let F(t) = x(t)i + y(t) ] be a smooth parametrization for the

constraint curve, and suppose f (X,,Y,) = f (X(t;), y(t;)) Is an extreme
value. Then since f Is differentiable along this curve,

df _ of dx N of dy :vf.dr
dt oxdt oy dt dt

att=t,. Therefore, Vf(X,,y,) L r'(t;). Butsince r(t) is a level curve
forg=9g(x,y), Vg (X, Yy)Iis also perpendicular to r'(t,).

Therefore, VI (X, Yo) I V3(Xo. Yo) = VI(Xg, ¥o) = AVA(X5, Yo)-

=0 when these derivatives are evaluated




