
LINE INTEGRALS



If f is defined on a smooth curve C parametrized
by x=x(t) and y=y(t), where a ≤ t ≤ b, and if s
represents arc length, then the line integral of f
along C is:
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Using our parametrization:
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We can also integrate along C just with
respect to either x or y:
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A particular application of line integrals is to
compute the work done by a force field F as 
it pushes a particle along a path C.



Recall that Work = Force x Distance.



Recall also that if our displacement is
represented by a vector D and the object 
displaced is acted upon by a force F pointing in
a different direction, then the work done is equal
to the component of F in the direction of D times
the length of D.  This gives the following:
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If our curve C is smooth and if the displacement
of our particle is small, then as a result of local
linearity, our displacement vector at a point
is approximately equal to the change in arc length
times the corresponding unit tangent vector.
Hence,
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If we partition our curve C into a series of 
subintervals of length ∆s, then the total work 
done by the force field in moving the particle 
along the curve C is:
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There are many different ways in which we
like to write this last formula:
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If F=<P,Q> and r=<x(t),y(t)>, then we get the 
following:
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Hence,
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Notice that the more the vectors in a force 
field tend to point in the direction of a closed 
curve C, the more the force field will tend to 
generate circulation of a point along the curve C. 



On the other hand, if you take a vector from the
force field below and look at its component in
the direction of a unit tangent vector at a point
on the closed curve C, then that component is 
equal to zero. 



Thus, this force field produces no circulation
of a point along the closed curve C. 



The bottom line is that the same integral that
computes work done by a force field in moving 
a point along a closed curve also measures the
measures the tendency for circulation to be
generated along that curve. 
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