PARAMETRIC EQUATIONS FOR A LINE

Suppose you want to define a line segment parametrically that starts at (a, b, c) and ends at (u, v, w).

Whatcha gonna do?

As you move from one point to the next, there will be a change in x, a change in y, and a change in z.

All of these changes will be linear functions of our parameter, t.

Hence,

$$
\begin{aligned}
& x=a+\Delta x \cdot t \\
& y=b+\Delta y \cdot t \\
& z=c+\Delta z \cdot t \\
& 0 \leq t \leq 1
\end{aligned}
$$

To extend the line, just change the range of values for t.

$$
\begin{aligned}
& x=a+\Delta x \cdot t \\
& y=b+\Delta y \cdot t \\
& z=c+\Delta z \cdot t \\
& -\infty<t<\infty
\end{aligned}
$$

When we get into vectors, we'll see another way to develop this formula.

$$
\begin{aligned}
& x=a+\Delta x \cdot t \\
& y=b+\Delta y \cdot t \\
& z=c+\Delta z \cdot t \\
& -\infty<t<\infty
\end{aligned}
$$

Problem: Find parametric equations for the line segment from $(1,2,3)$ to $(4,7,5)$.

Problem: Find parametric equations for the line segment from $(1,2,3)$ to $(4,7,5)$.

$$
\begin{aligned}
& \Delta x=4-1=3 \\
& \Delta y=7-2=5 \\
& \Delta z=5-3=2
\end{aligned}
$$

Problem: Find parametric equations for the line segment from $(1,2,3)$ to $(4,7,5)$.

$$
\begin{aligned}
& \Delta x=4-1=3 \\
& \Delta y=7-2=5 \\
& \Delta z=5-3=2
\end{aligned}
$$

$$
\begin{aligned}
& x=1+3 t \\
& y=2+5 t \\
& z=3+2 t \\
& 0 \leq t \leq 1
\end{aligned}
$$

Problem: Find parametric equations for the line segment from $(1,2,3)$ to $(4,7,5)$.

$$
\begin{aligned}
& x=1+3 t \\
& y=2+5 t \\
& z=3+2 t \\
& 0 \leq t \leq 1
\end{aligned}
$$

And now, extend the line.

$$
\begin{aligned}
& x=1+3 t \\
& y=2+5 t \\
& z=3+2 t \\
& -\infty<t<\infty
\end{aligned}
$$

