
PARAMETRIC SURFACES
AND TRANSFORMATIONS



A point in space can be associated with the 
position vector that terminates at that point.
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Similarly, a parametrized curved can be associated
with a corresponding vector-valued function.
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Here’s how we can express a line with vectors.
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Below are two ways we can describe
the unit circle.
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To shift the center of this circle to another location,
think in terms of adding a fixed vector to the one
that describes the circle. 1 cos
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We can do this same sort of thing in three dimensions
with a sphere by expressing x,y,and z in terms of
spherical coordinates.  If rho is fixed, as it is below, 
then our sphere is a surface described by two 
parameters. sin cos
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Again, adding a fixed vector to this will shift the center.
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Planes, in general, can be described by parametric
equations using a point and two non-parallel vectors 
that lie in the plane.
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