PARAMETRIC SURFACES AND TRANSFORMATIONS

A point in space can be associated with the position vector that terminates at that point.

Similarly, a parametrized curved can be associated with a corresponding vector-valued function.

Here's how we can express a line with vectors.

$$
\begin{aligned}
& L=\vec{r}+t \vec{v}=(1+4 t) \vec{i}+(3+t) \vec{j} \\
& \\
& x=1+4 t \\
& y=3+t \\
& -\infty<t<\infty
\end{aligned}
$$

Below are two ways we can describe the unit circle.

$$
\begin{gathered}
x=\cos t \\
y=\sin t \\
0 \leq t \leq 2 \pi \\
\vec{r}(t)=\cos (t) \vec{i}+\sin (t) \vec{j} \\
0 \leq t \leq 2 \pi
\end{gathered}
$$

To shift the center of this circle to another location, think in terms of adding a fixed vector to the one that describes the circle.

$$
x=1+\cos t
$$

$$
\vec{v}=\hat{i}+2 \hat{j}
$$

We can do this same sort of thing in three dimensions with a sphere by expressing x, y, and z in terms of spherical coordinates. If rho is fixed, as it is below, then our sphere is a surface described by two parameters.

$$
\begin{aligned}
& x=\rho \sin \varphi \cos \theta \\
& y=\rho \sin \varphi \sin \theta \\
& z=\rho \cos \varphi \\
& 0 \leq \theta \leq 2 \pi \\
& 0 \leq \varphi \leq \pi \\
& \rho=1
\end{aligned}
$$

$$
\vec{r}(\theta, \varphi)=(\sin \varphi \cos \theta) \vec{i}+(\sin \varphi \sin \theta) \vec{j}+(\cos \varphi) \hat{k}
$$

Again, adding a fixed vector to this will shift the center.

$$
\begin{aligned}
& x=\rho \sin \varphi \cos \theta \\
& y=\rho \sin \varphi \sin \theta \\
& z=\rho \cos \varphi+2 \\
& 0 \leq \theta \leq 2 \pi \\
& 0 \leq \varphi \leq \pi \\
& \rho=1
\end{aligned}
$$

$$
\vec{r}+\vec{v}=(\sin \varphi \cos \theta) \vec{i}+(\sin \varphi \sin \theta) \vec{j}+(\cos \varphi+2) \hat{k}
$$

Planes, in general, can be described by parametric equations using a point and two non-parallel vectors that lie in the plane. $P=(1,2,1)$

