PARTIAL DERIVATIVES

Consider the surface $z=f(x, y)=x^{2}+y^{2}$

We can slice through this surface with the plane $y=-2$.

$$
z=f(x, y)=x^{2}+y^{2}
$$

When we do this, the the curve of intersection is desribed by the equations:

$$
z=x^{2}+(-2)^{2}=x^{2}+4, \quad y=-2
$$

We can graph this equation in 2-dimensions.

And if we take a point such as $(2,8)$ on the graph, then we can use derivatives to find the tangent line.

If we add the point and the tangent line back to our surface plot, then it looks like this:

Here's what it all means.

We start with a surface $z=f(x, y)=x^{2}+y^{2}$

On this surface is a point $(2,-2,8)$.

$$
z=f(x, y)=x^{2}+y^{2}
$$

If we slice through the surface with the plane $y=-2$, we get a curve of intersection with our

 surface.$$
z=f(x, y)=x^{2}+y^{2}
$$

The blue line is the line that is tangent to the surface at $(2,-2,8)$ and that lies in the plane

 $y=-2$.$$
z=f(x, y)=x^{2}+y^{2}
$$

We can do something similar by slicing through with the plane $x=2$.
 $$
z=f(x, y)=x^{2}+y^{2}
$$

This time, the curve of intersection is:

$$
z=2^{2}+y^{2}=4+y^{2}, x=2
$$

The slope of the tangent line at $(2,-2,8)$ and in the plane $x=2$ can be found using derivatives.

These examples illustrate several points.

These examples illustrate two key points.

1. A point on a surface can have an infinite number of tangent lines, each one pointing in a different direction.

These examples illustrate two key points.

1. A point on a surface can have an infinite number of tangent lines, each one pointing in a different direction.
2. Two of these tangent lines can be found by fixing either the x-coordinate or the y-coordinate, and then taking the derivative in order to find the slope.

In practice, instead of actually fixing an x-value or y-value, we just pretend that we have and then differentiate with respect to the other variable.

In practice, instead of actually fixing an x-value or y-value, we just pretend that we have and then differentiate with respect to the other variable.

When we do this, we call it a partial derivative.

In practice, instead of actually fixing an x-value or y-value, we just pretend that we have and then differentiate with respect to the other variable.

When we do this, we call it a partial derivative.

And we use a slightly different notation.

Definition: If $z=f(x, y)$, then the partial derivative of z with respect to x is:

$$
z_{x}=\frac{\partial z}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x}
$$

Definition: If $z=f(x, y)$, then the partial derivative of z with respect to x is:

$$
z_{x}=\frac{\partial z}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x}
$$

In other words, just treat y as fixed, and differentiate with respect to x.

Definition: If $z=f(x, y)$, then the partial derivative of z with respect to x is:

$$
z_{x}=\frac{\partial z}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x}
$$

In other words, just treat y as fixed, and differentiate with respect to x.

$$
\begin{aligned}
& z=x^{2}+y^{2} \\
& z_{x}=\frac{\partial z}{\partial x}=2 x
\end{aligned}
$$

Definition: If $z=f(x, y)$, then the partial derivative of z with respect to y is:

$$
z_{y}=\frac{\partial z}{\partial y}=\lim _{\Delta y \rightarrow 0} \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y}
$$

Definition: If $z=f(x, y)$, then the partial derivative of z with respect to y is:

$$
z_{y}=\frac{\partial z}{\partial y}=\lim _{\Delta y \rightarrow 0} \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y}
$$

In other words, just treat x as fixed, and differentiate with respect to y.

Definition: If $z=f(x, y)$, then the partial derivative of z with respect to y is:

$$
z_{y}=\frac{\partial z}{\partial y}=\lim _{\Delta y \rightarrow 0} \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y}
$$

In other words, just treat x as fixed, and differentiate with respect to y.

$$
\begin{aligned}
& z=x^{2}+y^{2} \\
& z_{y}=\frac{\partial z}{\partial y}=2 y
\end{aligned}
$$

To reiterate, the partial derivative of z with respect to x can be used to find the slope of a tangent line to a point on a curve of intersection obtained by fixing y.

The partial derivative of z with respect to y can be used to find the slope of a tangent line to a point on a curve of intersection obtained-by fixing x.

Practice: For each of the following functions, find $\frac{\partial z}{\partial x} \& \frac{\partial z}{\partial y}$.

$$
\begin{aligned}
& \text { 1. } z=x^{3} y^{2} \\
& \text { 2. } z=\sqrt{x^{2}+y^{2}} \\
& \text { 3. } z=\ln (x y) \\
& \text { 4. } z=\sin \left(\frac{x}{y}\right) \\
& \text { 5. } z=x^{y}
\end{aligned}
$$

