THE PLANE TRUTH

Recall that $z=m_{x} x+m_{y} y+c$ is an equation for a plane.

Recall that $z=m_{x} x+m_{y} y+c$ is an equation for a plane.

In general, an equation for a plane can be written as
$A x+B y+C z+D=0$
where not all of the coefficients A, B, and C equal zero.

Suppose that we are given $2 x+3 y+4 z-20=0$.

Suppose that we are given $2 x+3 y+4 z-20=0$.

Then we claim that the vector $\vec{v}=2 \hat{i}+3 \hat{j}+4 \hat{k}$ is perpendicular to this plane.

Suppose that we are given $2 x+3 y+4 z-20=0$.

Then we claim that the vector $\vec{v}=2 \hat{i}+3 \hat{j}+4 \hat{k}$ is perpendicular to this plane.

To see this, notice that $(1,2,3)$ is a point in this plane.

$$
\begin{aligned}
& 2 x+3 y+4 z-20=0 \\
& \vec{v}=2 \hat{i}+3 \hat{j}+4 \hat{k} \quad P=(1,2,3)
\end{aligned}
$$

If $Q=(x, y, z)$ is any other point in this plane, then the displacement vector from P to Q is:

$$
\overrightarrow{P Q}=(x-1) \hat{i}+(y-2) \hat{j}+(z-3) \hat{k}
$$

$$
\begin{aligned}
& 2 x+3 y+4 z-20=0 \\
& \vec{v}=2 \hat{i}+3 \hat{j}+4 \hat{k} \quad P=(1,2,3) \\
& \overrightarrow{P Q}=(x-1) \hat{i}+(y-2) \hat{j}+(z-3) \hat{k}
\end{aligned}
$$

Furthermore, $\vec{v} \cdot \overrightarrow{P Q}=2(x-1)+3(y-2)+4(z-3)$

$$
\begin{aligned}
& =2 x-2+3 y-6+4 z-12 \\
& =2 x+3 y+4 z-20=0
\end{aligned}
$$

$$
\begin{aligned}
& 2 x+3 y+4 z-20=0 \\
& \vec{v}=2 \hat{i}+3 \hat{j}+4 \hat{k} \quad P=(1,2,3) \\
& \overrightarrow{P Q}=(x-1) \hat{i}+(y-2) \hat{j}+(z-3) \hat{k}
\end{aligned}
$$

Therefore, $\vec{v} \perp \overrightarrow{P Q}$, i.e. \vec{v} is perpendicular to $\overrightarrow{P Q}$.

$$
\begin{aligned}
& 2 x+3 y+4 z-20=0 \\
& \vec{v}=2 \hat{i}+3 \hat{j}+4 \hat{k} \quad P=(1,2,3) \\
& \overrightarrow{P Q}=(x-1) \hat{i}+(y-2) \hat{j}+(z-3) \hat{k}
\end{aligned}
$$

Since the point Q in the plane was picked arbitrarily, \vec{v} is perpendicular to any vector $\overrightarrow{P Q}$ in the plane $2 x+3 y+4 z-20=0$.

$$
\begin{aligned}
& 2 x+3 y+4 z-20=0 \\
& \vec{v}=2 \hat{i}+3 \hat{j}+4 \hat{k} \quad P=(1,2,3) \\
& \overrightarrow{P Q}=(x-1) \hat{i}+(y-2) \hat{j}+(z-3) \hat{k}
\end{aligned}
$$

Therefore, \vec{v} is perpendicular
to the plane $2 x+3 y+4 y-20=0$.

Similary, if $\vec{v}=A \hat{i}+B \hat{j}+C \hat{k}$ is a vector, and if $P=(a, b, c)$ is a point, then the plane containing P that is perpendicular to \vec{v} consists of all points $Q=(x, y, z)$ such that $\vec{v} \cdot \overrightarrow{P Q}=0$.

$$
\begin{aligned}
& \text { But } \vec{v} \cdot \overrightarrow{P Q}=(A \hat{i}+B \hat{j}+C \hat{k}) \cdot((x-a) \hat{i}+(y-b) \hat{j}+(z-c) \hat{k}) \\
& =A(x-a)+B(y-b)+C(z-c) \\
& =A x+B y+C z+A(-a)+B(-b)+C(-c)= \\
& =A x+B y+C z+D=0 .
\end{aligned}
$$

In other words, whenever we have a plane $A x+B y+C z+D=0$, the vector $\vec{v}=A \hat{i}+B \hat{j}+C \hat{k}$ will be perpendicular to this plane.

And whenever we have a vector $\vec{v}=A \hat{i}+B \hat{j}+C \hat{k}$, any plane $A x+B y+C z+D=0$ will be perpendicular to it.

Another way to look at this is to start with a plane that contains the point $(0,0,0)$, such as $2 x+3 y+4 z=0$.

Then if (x, y, z) is a point in this plane, it follows that $\vec{w}=x \hat{i}+y \hat{j}+z \hat{k}$ is a vector that lies in this plane.

We can now write

$$
\begin{aligned}
& 2 x+3 y+4 z=(2 \hat{i}+3 \hat{j}+4 \hat{k}) \cdot(x \hat{i}+y \hat{j}+z \hat{k})=0 \\
& \Rightarrow(2 \hat{i}+3 \hat{j}+4 \hat{k}) \perp(x \hat{i}+y \hat{j}+z \hat{k}) .
\end{aligned}
$$

And finally, if we change the equation to $2 x+3 y+4 z=5$, then all we have changed is the z -intercept, and $2 \hat{i}+3 \hat{j}+4 \hat{k}$ is still perpendicular to the plane.

Now let's start with three noncollinear points in space.

Add the vectors $\overrightarrow{P Q}$ and $\overrightarrow{P R}$.

Find the cross product $\vec{N}=\overrightarrow{P Q} \times \overrightarrow{P R}$.

$$
\begin{aligned}
& P=(0,0,2)-2 \\
& -2\rangle \\
& \vec{N}=\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{cc}
\hat{i} & \hat{j} \\
2 & \hat{k} \\
2 & 0 \\
0 & 2
\end{array}-2\right|=4 \hat{i}+4 \hat{j}+4 \hat{k}=\langle 4,4,4\rangle
\end{aligned}
$$

Let $\overrightarrow{P S}=\langle x, y, z-2\rangle$ be the vector from $P=(0,0,2)$ to an arbitrary point $S=(x, y, z)$ in the plane, and find an equation for the plane by computing $\overrightarrow{P S} \cdot \vec{N}$.

$$
\overrightarrow{P S} \cdot \vec{N}=4 x+4 y+4 z-8=0 \Rightarrow z=-x-y+2
$$

