PUTTING IT ALL TOGETHER

Let's start with the graph of $z = x^2 + y^2$.

Next, let's look at the intersection of this surface with the plane x = 1.

implicitplot3d (x = 1, x = -3..3, y = -3..3, z = 0..18, color = cyan, transparency = 0.5, axes = normal);

The equation in 2-dimensions for the curve of intersection is $z = 1^2 + y^2 = 1 + y^2$.

 $plot(1 + y^2, y = -3..3, view = [-3..3, -3..3], thickness = 3);$

We can use parametric equations to add this curve to our graph in three dimensions.

What are the appropriate parametric equations?

What are the appropriate parametric equations?

Now let's go back to 2-dimensions and find the tangent line at the point (2,5).

 $z(y) = y^2 + 1$

Now let's go back to 2-dimensions and find the tangent line at the point (2,5).

Now let's go back to 2-dimensions and find the tangent line at the point (2,5).

tangent line =T = 4(y-2) + 5 = 4y - 3 $\Rightarrow T = 4y - 3$ And finally, we can add this tangent line that lies in the plane x = 1 to our surface graph in 3-dimensions.

What could the parametric equations be for this tangent line in 3-dimensions?

What could the parametric equations be for this tangent line in 3-dimensions?

x = 1 y = 2 + t z = 5 + 4t $-3 \le t \le 3$

spacecurve([1, 2 + t, 5 + 4t], t = -3..3, color = blue, thickness = 3);

Now let's repeat everything starting this time with the intersection of our surface with the plane y = 2.

 $plot(x^2 + 4, x = -3..3, view = [-3..3, -3..10], color = red, thickness = 3);$

What are the parametric equations needed to add this curve to our surface graph?

Here they are!

spacecurve([t, 2,
$$t^2$$
 + 4], $t = -3..3$, color = red, thickness = 3, axes = normal);

Now we need to go back to 2-dimensions and find the tangent line at the point (1,5).

Now we need to go back to 2-dimensions and find the tangent line at the point (1,5).

Now we need to go back to 2-dimensions and find the tangent line at the point (1,5).

tangent line =T = 2(x-1) + 5 = 2x + 3 $\Rightarrow T = 2x + 3$ And now we can add this tangent line that lies in the plane y = 2 to our surface graph in 3-dimensions.

What are the parametric equations for this tangent line in 3-dimensions?

What are the parametric equations for this tangent line in 3-dimensions?

x = 1 + ty = 2z = 5 + 2t $-3 \le t \le 3$

spacecurve ([1 +
$$t$$
, 2, 5
+ 2 t], $t = -3..3$, color = blue, thickness = 3);

Now let's simultaneously look at both tangent lines at the point (1, 2, 5) on our surface.

These two tangent lines define a tangent plane at the point (1, 2, 5) on our surface.

implicitplot3d
$$(0.1 = (x - 1)^2 + (y - 2)^2$$

+ $(z - 5)^2$, $x = -3..3$, $y = -3..3$, $z = 0..8$, color =
red, axes = normal, orientation = [35, 80], numpoints
= 15000);

Can we find an equation for this tangent plane at the point (1,2,5)?

 $z = m_x x + m_y y + c$ z = 2x + 4y + c5 = 2(1) + 4(2) + c

 $z = m_x x + m_y y + c$ z = 2x + 4y + c 5 = 2(1) + 4(2) + cc = -5

•If we take a surface and a point (*a*,*b*,*c*) on the surface, then we can slice through that surface and the point with planes that are parallel to the *yz*- and *xz*-planes, respectively.

•These slices produce curves of intersection and tangent lines at the point (*a*,*b*,*c*).

•One of these tangent lines is in the direction of the positive *x*-axis, and the other is in the direction of the positive *y*-axis.

•These tangent lines can, furthermore, be used to construct a plane that is tangent to the surface at (*a*,*b*,*c*).

And that's it!

