PUTTING IT ALL TOGETHER

Let's start with the graph of $z=x^{2}+y^{2}$.

Next, let's look at the intersection of this surface with the plane $x=1$.

implicitplot $3 d(x=1, x=-3.3, y=-3.3, z=0 . .18$, color $=$ cyan, transparency $=0.5$, axes $=$ normal);

The equation in 2-dimensions for the curve of intersection

 is $z=1^{2}+y^{2}=1+y^{2}$.

$$
\begin{aligned}
& \text { plot }\left(1+y^{2}, y=-3.3, \text { view }=[-3 . .3,-3 . .3],\right. \text { thickness } \\
& =3) \text {; }
\end{aligned}
$$

We can use parametric equations to add this curve to our graph in three dimensions.

What are the appropriate parametric equations?

What are the appropriate parametric equations?

$$
\begin{aligned}
& x=1 \\
& y=t \\
& z=1^{2}+t^{2} \\
& -3 \leq t \leq 3
\end{aligned}
$$


```
spacecurve([ [1,t,1
    + t}\mp@subsup{\mp@code{2}}{}{2},t=-3.3, color = red, thickness=3, ares
    nommal);
```


Now let's go back to 2-dimensions and

 find the tangent line at the point $(2,5)$.

Now let's go back to 2-dimensions and

 find the tangent line at the point $(2,5)$.$$
\begin{aligned}
& z(y)=y^{2}+1 \\
& z^{\prime}(y)=2 y \\
& z^{\prime}(2)=4=\text { slope }
\end{aligned}
$$

Now let's go back to 2-dimensions and

 find the tangent line at the point $(2,5)$.$$
\begin{aligned}
& z(y)=y^{2}+1 \\
& z^{\prime}(y)=2 y \\
& z^{\prime}(2)=4=\text { slope }
\end{aligned}
$$

tangent line $=T=4(y-2)+5=4 y-3$

$$
\Rightarrow T=4 y-3
$$

And finally, we can add this tangent line that lies in the plane $x=1$ to our surface graph in 3-dimensions.

What could the parametric equations be for this tangent line in 3-dimensions?

What could the parametric equations be for this tangent line in 3-dimensions?

$$
\begin{aligned}
& x=1 \\
& y=2+t \\
& z=5+4 t \\
& -3 \leq t \leq 3
\end{aligned}
$$

$$
\begin{aligned}
& \text { spacecurve }([1,2+t, 5 \\
& \quad+4 t], t=-3.3, \text { color }=\text { blue, thickness }=3) \text {; }
\end{aligned}
$$

Now let's repeat everything starting this time with the intersection of our surface with the plane $y=2$.

The curve of intersection in 2-dimensions is

$$
z=x^{2}+2^{2}=x^{2}+4
$$

$$
\begin{aligned}
& \text { plot }\left(x^{2}+4, x=-3.3, \text { view }=[-3.3,-3 . .10],\right. \text { color } \\
& \quad=\text { red, thickness }=3) \text {; }
\end{aligned}
$$

What are the parametric equations needed to add this curve to our surface graph?

Here they are!

$$
\begin{aligned}
& x=t \\
& y=2 \\
& z=t^{2}+2^{2} \\
& -3 \leq t \leq 3
\end{aligned}
$$

spacecurve $\left(\left[t, 2, t^{2}\right.\right.$ $+4], t=-3.3$, color $=$ red, thickness $=3$, ares $=$ nomal);

Now we need to go back to 2-dimensions and find the tangent line at the point $(1,5)$.

$$
z(x)=x^{2}+4
$$

Now we need to go back to 2-dimensions and find the tangent line at the point $(1,5)$.

$$
\begin{aligned}
& z(x)=x^{2}+4 \\
& z^{\prime}(x)=2 x \\
& z^{\prime}(1)=2=\text { slope }
\end{aligned}
$$

Now we need to go back to 2-dimensions and find the tangent line at the point $(1,5)$.

$$
\begin{aligned}
& z(x)=x^{2}+4 \\
& z^{\prime}(x)=2 x \\
& z^{\prime}(1)=2=\text { slope }
\end{aligned}
$$

tangent line $=T=2(x-1)+5=2 x+3$

$$
\Rightarrow T=2 x+3
$$

And now we can add this tangent line that lies in the plane $y=2$ to our surface graph in 3-dimensions.

What are the parametric equations for this tangent line in 3-dimensions?

What are the parametric equations for this tangent line in 3-dimensions?

$$
\begin{aligned}
& x=1+t \\
& y=2 \\
& z=5+2 t \\
& -3 \leq t \leq 3
\end{aligned}
$$


```
spacecurve \(([1+t, 2,5\)
    \(+2 t], t=-3.3\), color \(=\) blue, thichness \(=3)\);
```

Now let's simultaneously look at both tangent lines at the point $(1,2,5)$ on our surface.

imphcitplot3d $0.1=(x-1)^{2}+(y-2)^{2}$
$+(z-5)^{2}, x=-3.3, y=-3 . .3, z=0.8$, color $=$ red, axes $=$ normal, onentation $=[35,80]$, numpoints
$=15000$) ;

These two tangent lines define a tangent plane

 at the point $(1,2,5)$ on our surface.
imphcitplot3d $0.1=(x-1)^{2}+(y-2)^{2}$
$+(z-5)^{2}, x=-3.3, y=-3 . .3, z=0 . .8$, color $=$ red, axes $=$ normal, onentation $=[35,80]$, numpoints
$=15000$);

Can we find an equation for this tangent plane

 at the point $(1,2,5)$?

YES!

YES!

$$
z=m_{x} x+m_{y} y+c
$$

YES!

$$
\begin{aligned}
& z=m_{x} x+m_{y} y+c \\
& z=2 x+4 y+c
\end{aligned}
$$

YES!

$$
\begin{aligned}
& z=m_{x} x+m_{y} y+c \\
& z=2 x+4 y+c \\
& 5=2(1)+4(2)+c
\end{aligned}
$$

YES!

$$
\begin{aligned}
& z=m_{x} x+m_{y} y+c \\
& z=2 x+4 y+c \\
& 5=2(1)+4(2)+c \\
& c=-5
\end{aligned}
$$

YES!

$$
\begin{aligned}
z & =m_{x} x+m_{y} y+c \\
z & =2 x+4 y+c \\
5 & =2(1)+4(2)+c \\
c & =-5 \\
z & =2 x+4 y-5
\end{aligned}
$$

What have we learned?

What have we learned?

-If we take a surface and a point (a, b, c) on the surface, then we can slice through that surface and the point with planes that are parallel to the $y z$ - and $x z$-planes, respectively.

What have we learned?

-These slices produce curves of intersection and tangent lines at the point (a, b, c).

What have we learned?

-One of these tangent lines is in the direction of the positive x-axis, and the other is in the direction of the positive y-axis.

What have we learned?

-These tangent lines can, furthermore, be used to construct a plane that is tangent to the surface at (a, b, c).

$$
z=m_{x} x+m_{y} y+c
$$

And that's it!

$$
\begin{aligned}
& z=m_{x} x+m_{y} y+c \\
& P=(1,2,5) \\
& z=2 x+4 y-5
\end{aligned}
$$

