# **Proof of the Second Partials Test**



## The Second Partials Test

Suppose (a,b) is a point such that  $f_x(a,b) = 0 = f_y(a,b)$ , and let

$$D = D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - \left[f_{xy}(a,b)\right]^2 = \begin{vmatrix} f_{xx}(a,b) & f_{xy}(a,b) \\ f_{xy}(a,b) & f_{yy}(a,b) \end{vmatrix}$$

- 1. If D > 0 and  $f_{xx}(a,b) > 0$ , then f(a,b) is a local minimum.
- 2. If D > 0 and  $f_{xx}(a,b) < 0$ , then f(a,b) is a local maximum.
- 3. If D < 0, then (a,b,f(a,b)) is a saddle point.
- 4. If D = 0, then we know nothing.

Let  $D(a,b) = f_{xx}(a,b) \cdot f_{yy}(a,b) - \left[ f_{xy}(a,b) \right]^2$ .

Let 
$$D(a,b) = f_{xx}(a,b) \cdot f_{yy}(a,b) - [f_{xy}(a,b)]^2$$
.

We will abbreviate this as  $D = f_{xx}f_{yy} - f_{xy}^{2}$ .

Let 
$$D(a,b) = f_{xx}(a,b) \cdot f_{yy}(a,b) - [f_{xy}(a,b)]^2$$
.

We will abbreviate this as  $D = f_{xx}f_{yy} - f_{xy}^{2}$ .

Now let  $\vec{u} = h\hat{i} + k\hat{j}$  be a unit vector.

Let 
$$D(a,b) = f_{xx}(a,b) \cdot f_{yy}(a,b) - [f_{xy}(a,b)]^2$$
.

We will abbreviate this as  $D = f_{xx}f_{yy} - f_{xy}^{2}$ .

Now let  $\vec{u} = h\hat{i} + k\hat{j}$  be a unit vector.

Then  $D_{\vec{u}} \cdot f = \nabla f \cdot \vec{u} = f_x h + f_y k$ .

Let 
$$D(a,b) = f_{xx}(a,b) \cdot f_{yy}(a,b) - [f_{xy}(a,b)]^2$$
.

We will abbreviate this as  $D = f_{xx} f_{yy} - f_{xy}^{2}$ .

Now let  $\vec{u} = h\hat{i} + k\hat{j}$  be a unit vector.

Then  $D_{\vec{u}} \cdot f = \nabla f \cdot \vec{u} = f_x h + f_y k$ .

Also, 
$$D_{\vec{u}}^2 f = D_{\vec{u}} (D_{\vec{u}} f) = \nabla (D_{\vec{u}} f) \cdot \vec{u}$$
  

$$= \left[ (f_{xx}h + f_{yx}k)\hat{i} + (f_{xy}h + f_{yy}k)\hat{j} \right] \cdot \left[h\hat{i} + k\hat{j}\right]$$

$$= f_{xx}h^2 + f_{yx}hk + f_{xy}hk + f_{yy}k^2$$

$$= f_{xx}h^2 + 2f_{xy}hk + f_{yy}k^2.$$

We can rewrite this by completing the square.

$$D_{\vec{u}}^{2} f = f_{xx}h^{2} + 2f_{xy}hk + f_{yy}k^{2}$$
  
=  $f_{xx}\left(h^{2} + \frac{2f_{xy}}{f_{xx}}hk\right) + f_{yy}k^{2}$   
=  $f_{xx}\left(h^{2} + \frac{2f_{xy}}{f_{xx}}hk + \left[\frac{f_{xy}k}{f_{xx}}\right]^{2}\right) + f_{yy}k^{2} - \frac{f_{xy}^{2}k^{2}}{f_{xx}}$   
=  $f_{xx}\left(h + \frac{f_{xy}k}{f_{xx}}\right)^{2} + \frac{k^{2}}{f_{xx}}\left(f_{xx}f_{yy} - f_{xy}^{2}\right).$ 

$$D^{2}_{\vec{u}}f == f_{xx}\left(h + \frac{f_{xy}k}{f_{xx}}\right)^{2} + \frac{k^{2}}{f_{xx}}\left(f_{xx}f_{yy} - f_{xy}^{2}\right).$$

If  $D = f_{xx}f_{yy} - f_{xy}^2 > 0$  and  $f_{xx} > 0$ , then  $D_{\vec{u}}^2 f > 0$  for all unit vectors  $\vec{u}$ .

Consequently, any plane that passes through z = f(x, y) and contains the point (a,b, f(a,b)) and is perpendicular to the xy – plane will result in a curve of intersection with z = f(x, y) that is concave up.

Therefore, (a,b,f(a,b)) is a minimum point.

If  $D^2_{\vec{u}} f < 0$  for all unit vectors  $\vec{u}$ , the argument is similar that (a,b,f(a,b)) is a maximum point.

Now suppose that  $D = f_{xx} f_{yy} - f_{xy}^{2} < 0$ , and recall  $D_{\vec{u}}^{2} f = f_{xx} h^{2} + 2 f_{xy} h k + f_{yy} k^{2}$ . Suppose  $f_{xx} \neq 0$ , and note  $f_{xx} D_{\vec{u}}^{2} = f_{xx} \left( f_{xx} h^{2} + 2 f_{xy} h k + f_{yy} k^{2} \right)$  $= f_{xx}^{2} h^{2} + 2 f_{xx} f_{yy} h k + f_{xx} f_{yy} k^{2}$  $= f_{xx}^{2} h^{2} + 2 f_{xx} f_{xy} h k + f_{xy}^{2} k^{2} + f_{xx} f_{yy} k^{2} - f_{xy}^{2} k^{2}$  $= \left( f_{xx} h + f_{xy} k \right)^{2} + \left( f_{xx} f_{yy} - f_{xy}^{2} \right) k^{2}$ 

Hence, 
$$f_{xx}D_{\vec{u}}^2 > 0$$
 when  $h \neq 0$  &  $k = 0$ ,  
and  $f_{xx}D_{\vec{u}}^2 < 0$  when  $f_{xx}h + f_{xy}k = 0$  &  $k \neq 0$   
Therefore,  $(a,b,f(a,b))$  is a saddle point.

Also, if  $f_{yy} \neq 0$ , then a similar argument may be used to arrive at the same conclusion that (a, b, f(a, b)) is a saddle point.

Because if  $k \neq 0$  and  $f_{xx} \neq 0$  (by hypothesis),

then we can write  $f_{xx}h + f_{xy}k = 0$  as  $\frac{h}{k} = \frac{-f_{xy}}{f_{xx}}$ .

Because if  $k \neq 0$  and  $f_{xx} \neq 0$  (by hypothesis),

then we can write  $f_{xx}h + f_{xy}k = 0$  as  $\frac{h}{k} = \frac{-f_{xy}}{f_{xx}}$ .

But  $\vec{u} = h\hat{i} + k\hat{j}$  is a unit vector which means that  $h = \cos\theta$  and  $k = \sin\theta$  for some angle  $\theta$  such that  $0 \le \theta \le 2\pi$ .

Because if  $k \neq 0$  and  $f_{xx} \neq 0$  (by hypothesis),

then we can write  $f_{xx}h + f_{xy}k = 0$  as  $\frac{h}{k} = \frac{f_{xy}}{f_{xx}}$ .

But  $\vec{u} = h\hat{i} + k\hat{j}$  is a unit vector which means that  $h = \cos\theta$  and  $k = \sin\theta$  for some angle  $\theta$  such that  $0 \le \theta \le 2\pi$ .

Therefore, we need a 
$$\theta$$
 such that  $\frac{-f_{xy}}{f_{xx}} = \frac{h}{k} = \frac{\cos\theta}{\sin\theta} = \cot\theta.$ 

Because if  $k \neq 0$  and  $f_{xx} \neq 0$  (by hypothesis),

then we can write  $f_{xx}h + f_{xy}k = 0$  as  $\frac{h}{k} = \frac{-f_{xy}}{f_{xx}}$ .

But  $\vec{u} = h\hat{i} + k\hat{j}$  is a unit vector which means that  $h = \cos\theta$  and  $k = \sin\theta$  for some angle  $\theta$  such that  $0 \le \theta \le 2\pi$ .

Therefore, we need a 
$$\theta$$
 such that  $\frac{-f_{xy}}{f_{xx}} = \frac{h}{k} = \frac{\cos\theta}{\sin\theta} = \cot\theta.$ 

Since the range of the  $\cot \theta$  is all real numbers, such a  $\theta$  exists.

Now suppose again that  $D = f_{xx}f_{yy} - f_{xy}^2 < 0$ , and recall  $D_{\vec{u}}^2 f = f_{xx}h^2 + 2f_{xy}hk + f_{yy}k^2$ .

If 
$$f_{xx} = 0 = f_{yy}$$
, then  $D^2_{\vec{u}}f = f_{xx}h^2 + 2f_{xy}hk + f_{yy}k^2$   
reduces to  $D^2_{\vec{u}}f = 2f_{xy}hk$  and  $D = -f_{xy}^2 < 0$ .

Hence,  $f_{xy} \neq 0$ , and  $D_{\vec{u}}^2 f$  will have different signs for the unit vectors  $\vec{u}_1 = \frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j}$  and  $\vec{u}_2 = \frac{1}{\sqrt{2}}\hat{i} - \frac{1}{\sqrt{2}}\hat{j}$ .

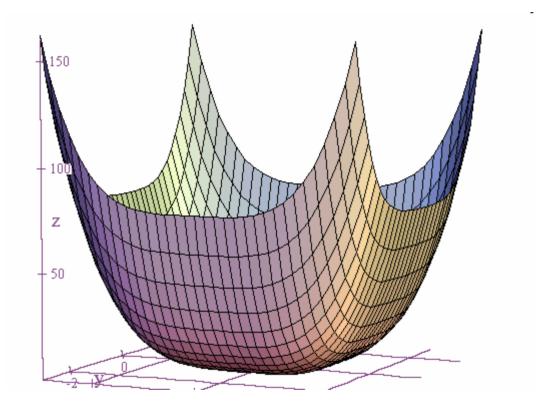
Therefore, (a, b, f(a, b)) is a saddle point.

Now consider  $z_1 = x^4 + y^4$  and  $z_2 = x^4 - y^4$ .

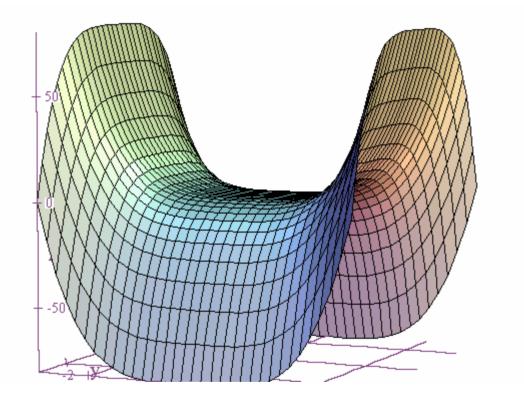
For each of these functions (0,0) is a critical point.

However, it's easy to show that for each of these functions, D(0,0) = 0.

And from the pictures below, we see that one has a minimum point while the other has a saddle point.



$$z = x^4 + y^4$$



$$z = x^4 - y^4$$

### Therefore, D=0 means nothing.

