Proof of the Second Partials Test

The Second Partials Test

Suppose (a, b) is a point such that $f_{x}(a, b)=0=f_{y}(a, b)$, and let
$D=D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}=\left|\begin{array}{ll}f_{x x}(a, b) & f_{x y}(a, b) \\ f_{x y}(a, b) & f_{y y}(a, b)\end{array}\right|$.

1. If $D>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is a local minimum.
2. If $D>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a local maximum.
3. If $D<0$, then (a,b, $f(a, b)$) is a saddle point.
4. If $D=0$, then we know nothing.

PROOF:

Let $D(a, b)=f_{x x}(a, b) \cdot f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$.

PROOF:

Let $D(a, b)=f_{x x}(a, b) \cdot f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$.

We will abbreviate this as $D=f_{x x} f_{y y}-f_{x y}{ }^{2}$.

PROOF:

Let $D(a, b)=f_{x x}(a, b) \cdot f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$.

We will abbreviate this as $D=f_{x x} f_{y y}-f_{x y}{ }^{2}$.
Now let $\vec{u}=h \hat{i}+k \hat{j}$ be a unit vector.

PROOF:

Let $D(a, b)=f_{x x}(a, b) \cdot f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$.

We will abbreviate this as $D=f_{x x} f_{y y}-f_{x y}{ }^{2}$.
Now let $\vec{u}=h \hat{i}+k \hat{j}$ be a unit vector.
Then $D_{\vec{u}} \cdot f=\nabla f \cdot \vec{u}=f_{x} h+f_{y} k$.

PROOF:

Let $D(a, b)=f_{x x}(a, b) \cdot f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$.

We will abbreviate this as $D=f_{x x} f_{y y}-f_{x y}{ }^{2}$.
Now let $\vec{u}=h \hat{i}+k \hat{j}$ be a unit vector.
Then $D_{\vec{u}} \cdot f=\nabla f \cdot \vec{u}=f_{x} h+f_{y} k$.

Also, $D^{2}{ }_{\vec{u}} f=D_{\vec{u}}\left(D_{\vec{u}} f\right)=\nabla\left(D_{\vec{u}} f\right) \cdot \vec{u}$
$=\left[\left(f_{x x} h+f_{y x} k\right) \hat{i}+\left(f_{x y} h+f_{y y} k\right) \hat{j}\right] \cdot[h \hat{i}+k \hat{j}]$
$=f_{x x} h^{2}+f_{y x} h k+f_{x y} h k+f_{y y} k^{2}$
$=f_{x x} h^{2}+2 f_{x y} h k+f_{y y} k^{2}$.

We can rewrite this by completing the square.

$$
\begin{aligned}
& D_{\vec{u}}^{2} f=f_{x x} h^{2}+2 f_{x y} h k+f_{y y} k^{2} \\
& =f_{x x}\left(h^{2}+\frac{2 f_{x y}}{f_{x x}} h k\right)+f_{y y} k^{2} \\
& =f_{x x}\left(h^{2}+\frac{2 f_{x y}}{f_{x x}} h k+\left[\frac{f_{x y} k}{f_{x x}}\right]^{2}\right)+f_{y y} k^{2}-\frac{f_{x y}^{2} k^{2}}{f_{x x}} \\
& =f_{x x}\left(h+\frac{f_{x y} k}{f_{x x}}\right)^{2}+\frac{k^{2}}{f_{x x}}\left(f_{x x} f_{y y}-{\left.f_{x y}{ }^{2}\right) .}^{\text {a }} .\right.
\end{aligned}
$$

$$
D_{\bar{u}}^{2} f=f_{x x}\left(h+\frac{f_{x y} k}{f_{x x}}\right)^{2}+\frac{k^{2}}{f_{x x}}\left(f_{x x} f_{y y}-f_{x y}{ }^{2}\right) .
$$

If $D=f_{x x} f_{y y}-f_{x y}{ }^{2}>0$ and $f_{x x}>0$, then $D_{\bar{u}}^{2} f>0$ for all unit vectors \vec{u}.

Consequently, any plane that passes through $z=f(x, y)$ and contains the point ($a, b, f(a, b)$) and is perpendicular to the $x y$ - plane will result in a curve of intersection with $z=f(x, y)$ that is concave up.

Therefore, $(a, b, f(a, b))$ is a minimum point.
If $D^{2}{ }_{\vec{u}} f<0$ for all unit vectors \vec{u}, the argument is similar that ($a, b, f(a, b)$) is a maximum point.

Now suppose that $D=f_{x x} f_{y y}-f_{x y}{ }^{2}<0$, and recall $D^{2}{ }_{u} f=f_{x x} h^{2}+2 f_{x y} h k+f_{y y} k^{2}$.

Suppose $f_{x x} \neq 0$, and note $f_{x x} D_{\vec{u}}^{2}=f_{x x}\left(f_{x x} h^{2}+2 f_{x y} h k+f_{y y} k^{2}\right)$
$=f_{x x}{ }^{2} h^{2}+2 f_{x x} f_{y y} h k+f_{x x} f_{y y} k^{2}$
$=f_{x x}{ }^{2} h^{2}+2 f_{x x} f_{x y} h k+f_{x y}{ }^{2} k^{2}+f_{x x} f_{y y} k^{2}-f_{x y}{ }^{2} k^{2}$
$=\left(f_{x x} h+f_{x y} k\right)^{2}+\left(f_{x x} f_{y y}-f_{x y}{ }^{2}\right) k^{2}$

Hence, $f_{x x} D_{\vec{u}}^{2}>0$ when $h \neq 0 \& k=0$, and $f_{x x} D_{\vec{u}}^{2}<0$ when $f_{x x} h+f_{x y} k=0 \& k \neq 0$

Therefore, $(a, b, f(a, b))$ is a saddle point.
Also, if $f_{y y} \neq 0$, then a similar argument may be used to arrive at the same conclusion that $(a, b, f(a, b))$ is a saddle point.

By the way, how do we know that if $k \neq 0$, then there even exists an h such that $f_{x x} h+f_{x y} k=0$?

By the way, how do we know that if $k \neq 0$, then there even exists an h such that $f_{x x} h+f_{x y} k=0$?

Because if $k \neq 0$ and $f_{x x} \neq 0$ (by hypothesis),
then we can write $f_{x x} h+f_{x y} k=0$ as $\frac{h}{k}=\frac{-f_{x y}}{f_{x x}}$.

By the way, how do we know that if $k \neq 0$, then there even exists an h such that $f_{x x} h+f_{x y} k=0$?

Because if $k \neq 0$ and $f_{x x} \neq 0$ (by hypothesis),
then we can write $f_{x x} h+f_{x y} k=0$ as $\frac{h}{k}=\frac{-f_{x y}}{f_{x x}}$.
But $\vec{u}=h \hat{i}+k \hat{j}$ is a unit vector which means that $h=\cos \theta$ and $k=\sin \theta$ for some angle θ such that $0 \leq \theta \leq 2 \pi$.

By the way, how do we know that if $k \neq 0$, then there even exists an h such that $f_{x x} h+f_{x y} k=0$?

Because if $k \neq 0$ and $f_{x x} \neq 0$ (by hypothesis),
then we can write $f_{x x} h+f_{x y} k=0$ as $\frac{h}{k}=\frac{f_{x y}}{f_{x x}}$.
But $\vec{u}=h \hat{i}+k \hat{j}$ is a unit vector which means that $h=\cos \theta$ and $k=\sin \theta$ for some angle θ such that $0 \leq \theta \leq 2 \pi$.

Therefore, we need a θ such that $\frac{-f_{x y}}{f_{x x}}=\frac{h}{k}=\frac{\cos \theta}{\sin \theta}=\cot \theta$.

By the way, how do we know that if $k \neq 0$, then there even exists an h such that $f_{x x} h+f_{x y} k=0$?

Because if $k \neq 0$ and $f_{x x} \neq 0$ (by hypothesis),
then we can write $f_{x x} h+f_{x y} k=0$ as $\frac{h}{k}=\frac{-f_{x y}}{f_{x x}}$.
But $\vec{u}=h \hat{i}+k \hat{j}$ is a unit vector which means that $h=\cos \theta$ and $k=\sin \theta$ for some angle θ such that $0 \leq \theta \leq 2 \pi$.

Therefore, we need a θ such that $\frac{-f_{x y}}{f_{x x}}=\frac{h}{k}=\frac{\cos \theta}{\sin \theta}=\cot \theta$.
Since the range of the $\cot \theta$ is all real numbers, such a θ exists.

Now suppose again that $D=f_{x x} f_{y y}-f_{x y}{ }^{2}<0$, and recall $D^{2}{ }_{u} f=f_{x x} h^{2}+2 f_{x y} h k+f_{y y} k^{2}$.

If $f_{x x}=0=f_{y y}$, then $D^{2}{ }_{u} f=f_{x x} h^{2}+2 f_{x y} h k+f_{y y} k^{2}$ reduces to $D_{\bar{u}}^{2} f=2 f_{x y} h k$ and $D=-f_{x y}{ }^{2}<0$.

Hence, $f_{x y} \neq 0$, and $D^{2}{ }_{u} f$ will have different signs for the unit vectors
$\vec{u}_{1}=\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}$ and $\vec{u}_{2}=\frac{1}{\sqrt{2}} \hat{i}-\frac{1}{\sqrt{2}} \hat{j}$.

Therefore, $(a, b, f(a, b))$ is a saddle point.

Now consider $z_{1}=x^{4}+y^{4}$ and $z_{2}=x^{4}-y^{4}$.

For each of these functions $(0,0)$ is a critical point.

However, it's easy to show that for each of these functions, $D(0,0)=0$.

And from the pictures below, we see that one has a minimum point while the other has a saddle point.

$$
z=x^{4}+y^{4}
$$

$$
z=x^{4}-y^{4}
$$

Therefore, $D=0$ means nothing.

