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1.  If 0 and ( , ) 0,  then ( , ) is a local minimum.
2.  If 0 and ( , ) 0,  then ( , ) is a local maximum. 
3.  If 0,  then (a,b, ( , )) is a saddle point. 
4.  If 0, then we know nothing.
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2 2If  0 and  0, then  0 for all unit vectors .xx yy xy xx uD f f f f D f u= − > > >

Consequently, any plane that passes through  ( , ) and contains
the point  ( , , ( , )) and is perpendicular to the plane will result
in a curve of intersection with  ( , ) that is concave up.
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Therefore,  ( , , ( , )) is a minimum point.a b f a b

2If  0 for all unit vectors ,  the argument is similar
that ( , , ( , )) is a maximum point.

uD f u
a b f a b

<



2

2 2 2

Now suppose that 

and recall

0,

 2 .
xx yy xy

u xx xy yy

D f f f

D f f h f hk f k

= − <

= + +

( )

( ) ( )

2 2 2

2 2 2

2 2 2 2 2 2 2

2 2 2

Suppose 0,and n 2

2

ote

2

 xx u xx xx xy yy

xx xx yy xx yy

xx xx xy xy xx yy xy

xx xy xx yy

x

x

x

y

f D f f h f hk f k

f h f f hk f f k

f h f f hk f k f f k f k

f f f f

f

h f k k

= + +

= + +

= + + + −

= + −

≠

+

2

2

Hence, 0 when 0 & 0,
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( )Therefore, , , ( , ) is a saddle point.a b f a b

( )
Also, if 0, then a similar argument may be used to arrive at the

same conclusion that , , ( , ) is a saddle point.
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Since the range of the cot  is all real numbers, such a  exists.θ θ
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reduces to 2 and  0.
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Hence,  0, and    will have different signs for the unit vectors
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1 2Now consider    and  .z x y z x y= + = −

For each of these functions (0,0) is a critical point.

However, it's easy to show that for each of these functions, (0,0) 0.D =

And from the pictures below, we see that one has a minimum point
while the other has a saddle point.
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Therefore, 0  means nothing.D=


