
UNIT TANGENTS AND NORMALS



Suppose we have a curve defined by a vector
valued function.
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Then the derivative evaluated at a point will give
us a vector tangent to the curve.
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However, this vector is not necessarily a unit
vector.
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To get the unit tangent vector, divide dr/dt by its
length.
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If our unit tangent vector is written in component
form as,

( ) ( )ˆ ˆ
( ) ( )

P t Q tT i j
r t r t
′ ′

= +
′ ′

Then we define the unit normal by,
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This method always results in a normal vector that
points to the right of the direction in which our unit
tangent vector is facing.
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If we have a curve in three dimensions, then things
are slightly more complicated.

ˆˆ ˆ( ) ( ) ( ) ( )r t P t i Q t j R t k
a t b

= + +
≤ ≤



However, since we won’t need that case for what
we are going to do later, we’ll skip it for now.
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