VECTOR FIELDS




A IS a function that assigns a vector to a point in n-dimensional
space. We'll generally restrict the number of dimensions to 2.

An easy way to get a vector field from a function of several variables is

by finding its gradient. The resulting vector field is called a gradient field,
and the multivariable function that gives rise to it is called a potential or
potential function.

Vector fields are ideal for modeling situations where forces are present at
different points in space.
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EXAMPLE: E(x,y)=Xi +Yj
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EXAMPLE:
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EXAMPLE:
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EXAMPLE: F(x,y)=xi +0
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EXAMPLE: F(X,y)=1+X]




EXAMPLE: z = f(x,y) = X% — y?
VE(x,y)=F (X y)=2xi —2yj
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EXAMPLE: F(X,y,2)=XI — Y] + Z




Some vector fields have a tendency to cause circulation about a point.
We can measure this through something we call the curl of the vector field.
We'll find out later why this is a meaningful way to do it.

IfF =P(x,y,2)i +Q(X,Y,2)] +R(X,Y,2)K, then
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If F is a 2-dimensional vector field, F = Pi + Qj, then

curlof F=V xF = RQ_P K
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EXAMPLE: Consider F(x,y) = xi +Yj. There is no tendency for the field

to cause circulation around any point. Thus, the curl is equal to O.
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EXAMPLE: Consider F(x,y)=-Vi + xj. This vector field does create
circulation about points.
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Other vector fields have a tendency to cause a flow or flux across a
circular boundary. We can measure this through something we call
the divergence of the vector field. Again, we'll find out later why
our definition is meaningful.

IfF =P(x,y,2)i +Q(x,V,2)] +R(x,V,2)k, then
divergenceof F=V.F
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If F is a 2-dimensional vector field, F = Pi +Qj, then

divergenceof F=VsF = P L RQ
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EXAMPLE: Consider F(x,y) = xi + yj. There is a tendency for the field
to cause a flux across a circular boundary.
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EXAMPLE: Consider F(x,y)=-Vi + xj. There is no tendency for the field
to cause a flux across a circular boundary.
Thus, the divergence should be zero.
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