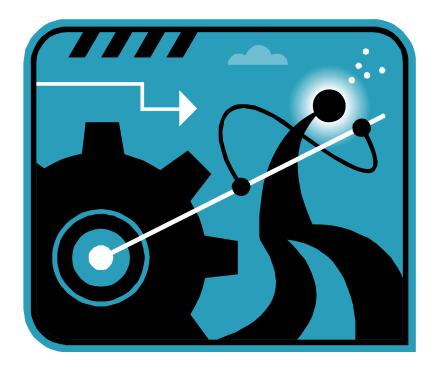
WORK, COMPONENTS, AND PROJECTIONS



Suppose we have two vectors, $\vec{F} = \hat{i} + 2\hat{j}$ and $\vec{d} = 4\hat{i} + \hat{j}$.

 \vec{F} θ \vec{d}

$$\vec{F} = \hat{i} + 2\hat{j}$$
$$\vec{d} = 4\hat{i} + \hat{j}$$

Think of \vec{F} as representing a force in pounds and \vec{d} as representing a distance in feet.

 \vec{F} θ \vec{d}

 $\vec{F} = \hat{i} + 2\hat{j}$ $\vec{d} = 4\hat{i} + \hat{j}$

"Work" is classically defined as force×distance.

 \vec{F} θ \vec{d}

 $\vec{F} = \hat{i} + 2\hat{j}$ $\vec{d} = 4\hat{i} + \hat{j}$

But what we need to know now is the component of the force \vec{F} that is acting in the direction of the distance vector \vec{d} .

 \vec{F} θ \vec{d}

$$\vec{F} = \hat{i} + 2\hat{j}$$
$$\vec{d} = 4\hat{i} + \hat{j}$$

Clearly,

$$comp_{\vec{d}}\vec{F} = \|\vec{F}\|\cos\theta = \frac{\vec{F}\cdot\vec{d}}{\|\vec{d}\|} = \frac{6}{\sqrt{17}} = \frac{6\sqrt{17}}{17}$$
$$\vec{F}$$
$$\theta$$
$$\vec{d}$$

$$\vec{F} = \hat{i} + 2\hat{j}$$
$$\vec{d} = 4\hat{i} + \hat{j}$$

This is a scalar quantity that we call the component of \vec{F} in the direction of \vec{d} .

$$comp_{\vec{d}}\vec{F} = \left\|\vec{F}\right\|\cos\theta = \frac{\vec{F}\cdot\vec{d}}{\left\|\vec{d}\right\|} = \frac{6}{\sqrt{17}} = \frac{6\sqrt{17}}{17}$$
$$\vec{F}$$

$$\vec{F} = \hat{i} + 2\hat{j}$$
$$\vec{d} = 4\hat{i} + \hat{j}$$

To get the corresponding vector, multiply this component by a unit vector in the direction of \vec{d} .

$$proj_{\vec{d}}\vec{F} = \left(\left\|\vec{F}\right\|\cos\theta\right)\frac{\vec{d}}{\left\|\vec{d}\right\|} = \frac{\vec{F}\cdot\vec{d}}{\left\|\vec{d}\right\|} \cdot \frac{\vec{d}}{\left\|\vec{d}\right\|} = \left(\frac{\vec{F}\cdot\vec{d}}{\left\|\vec{d}\right\|^2}\right)\vec{d} = \left(\frac{\vec{F}\cdot\vec{d}}{\left\|\vec{d}\cdot\vec{d}\right\|}\right)\vec{d}$$
$$= \frac{24}{17}\hat{i} + \frac{6}{17}j$$
$$\vec{F}$$

$$F = \hat{i} + 2\hat{j}$$
$$\vec{d} = 4\hat{i} + \hat{j}$$

We call this the projection of
$$\vec{F}$$
 onto the vector \vec{d} .

$$proj_{\vec{d}}\vec{F} = \left(\|\vec{F}\|\cos\theta\right)\frac{\vec{d}}{\|\vec{d}\|} = \frac{\vec{F}\cdot\vec{d}}{\|\vec{d}\|} \cdot \frac{\vec{d}}{\|\vec{d}\|} = \left(\frac{\vec{F}\cdot\vec{d}}{\|\vec{d}\|^2}\right)\vec{d} = \left(\frac{\vec{F}\cdot\vec{d}}{\vec{d}\cdot\vec{d}}\right)\vec{d}$$

$$= \frac{24}{17}\hat{i} + \frac{6}{17}j$$

$$\vec{F}$$

 $\vec{F} = \hat{i} + 2\hat{j}$ $\vec{d} = 4\hat{i} + \hat{j}$

Now to find the work done, take the component of \vec{F} in the dirction of \vec{d} and multiply by the length of \vec{d} .

$$work = \left(\left\| \vec{F} \right\| \cos \theta \right) \left\| \vec{d} \right\| = \left\| \vec{F} \right\| \left\| \vec{d} \right\| \cos \theta = \vec{F} \cdot \vec{d} = 6 \text{ foot-pounds}$$
$$\vec{F}$$

$$F = i + 2j$$
$$\vec{d} = 4\hat{i} + \hat{j}$$

^

And finally, notice that if \vec{v} is vector and \vec{u} is a unit vector,

then
$$comp_{\vec{u}}\vec{v} == \frac{\vec{v} \cdot \vec{u}}{\|\vec{u}\|} = \vec{v} \cdot \vec{u}.$$

1. If
$$\vec{v} = 2\hat{i} + 3\hat{j} + 4\hat{k} \& \vec{u} = \hat{i}$$
, then $comp_{\hat{i}}\vec{v} = \vec{v} \cdot \hat{i} = 2$.

2. If
$$\vec{v} = 2\hat{i} + 3\hat{j} + 4\hat{k} \& \vec{u} = \hat{j}$$
, then $comp_{\hat{j}}\vec{v} = \vec{v} \cdot \hat{j} = 3$.

3. If
$$\vec{v} = 2\hat{i} + 3\hat{j} + 4\hat{k} \& \vec{u} = \hat{k}$$
, then $comp_{\hat{k}}\vec{v} = \vec{v} \cdot \hat{k} = 4$.

4. If
$$\vec{v} = 2\hat{i} + 3\hat{j} + 4\hat{k} \& \vec{u} = \frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{k}$$
,
then $comp_{\vec{u}}\vec{v} = \vec{v}\cdot\vec{u} = 3\sqrt{2}$.