SPHERICAL INTEGRALS

For each problem below, set up and evaluate a triple integral in spherical coordinates.

1. Let V be a sphere with center at the origin and radius $=r$. Find the volume of V.
2. Find the volume of the solid bounded above by the sphere $x^{2}+y^{2}+z^{2}=1$ and below by the cone $z=\sqrt{x^{2}+y^{2}}$.
3. Evaluate $\iiint_{V} \frac{1}{x^{2}+y^{2}+z^{2}} d V$ where V is the solid region between the spheres $x^{2}+y^{2}+z^{2}=4$ and $x^{2}+y^{2}+z^{2}=9$.
4. Find the volume of the solid bounded above by $z=1$ and below by $z=\sqrt{x^{2}+y^{2}}$.
5. Suppose you drill a hole of radius 1 through the center of a sphere of radius 3. Find the volume of the portion removed by the drill.
6. Find the volume of the solid region defined by $\rho=\sin \varphi$ where $0 \leq \theta \leq 2 \pi$ and $0 \leq \varphi \leq \pi$.
7. An object occupies the region inside the unit sphere with center at the origin and has density equal to the square of the distance from the origin. Find the mass.
