TRIPLE INTEGRALS

For each of the following problems write a triple integral and evaluate it.

1. Find the volume of the solid in the first octant bounded above by the plane $x+y+z=1$ and below by the $x y$-plane.
2. Find the volume of the solid between $z=x^{2}+y^{2}+1$ and $z=-x^{2}-y^{2}-1$ where $-1 \leq x \leq 1$ and $-1 \leq y \leq 1$.
3. Evaluate $\iiint_{V} x e^{x y} d V$ where V is the solid bounded by the planes $x=-1, x=1, y=0$, $y=2, z=0$, and $z=3$.
4. Evaluate $\int_{5}^{6} \int_{3}^{4} \int_{1}^{2} \cos (x) \cos (y) \cos (z) d z d y d x$.
5. Evaluate $\int_{0}^{1} \int_{0}^{x} \int_{0}^{y} z e^{y^{2}} d x d y d z$.
6. Evaluate $\int_{0}^{\pi / 2} \int_{0}^{\sin \theta} \int_{0} \int_{0}^{\sin \theta} r \cos \theta d z d r d \theta$.
7. Find the volume of the solid region bounded by $z=|x|+|y|$ and $z=2$.
8. Use a triple integral to find the volume of the great pyramid of Cheops given that it is 482 feet tall and has a square base that is 754 feet on each side. (HINT: Take advantage of symmetry.)
9. Find the mass of a cube with edge length 2 and density equal to the square of the distance from one of the corners.
10. Find the mass of a cube with edge length 2 and density equal to the square of the distance from one of the edges.
