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Vector Calculus 


Chapter 14introduced double and triple integrals. We went from dx to jj dx dy and 
JIJdx dy dz. All those integrals add up small pieces, and the limit gives area or volume 
or mass. What could be more natural than that? I regret to say, after the success of 
those multiple integrals, that something is missing. It is even more regrettable that 
we didn't notice it. The missing piece is nothing less than the Fundamental Theorem 
of Calculus. 

The double integral 11dx dy equals the area. To compute it, we did not use an 
antiderivative of 1. At least not consciously. The method was almost trial and error, 
and the hard part was to find the limits of integration. This chapter goes deeper, to 
show how the step from a double integral to a single integral is really a new form of 
the Fundamental Theorem-when it is done right. 

Two new ideas are needed early, one pleasant and one not. You will like vector 
fields. You may not think so highly of line integrals. Those are ordinary single integrals 
like J v(x)dx, but they go along curves instead of straight lines. The nice step dx 
becomes the confusing step ds. Where Jdx equals the length of the interval, J ds is 
the length of the curve. The point is that regions are enclosed by curves, and we have 
to integrate along them. The Fundamental Theorem in its two-dimensional form 
(Green's Theorem) connects a double integral over the region to a single integral along 
its boundary curve. 

The great applications are in science and engineering, where vector fields are so 
natural. But there are changes in the language. Instead of an antiderivative, we speak 
about a potential function. Instead of the derivative, we take the "divergence" and 
"curl." Instead of area, we compute flux and circulation and work. Examples come 
first. 

-1 FieldsVector
15.1 

For an ordinary scalar function, the input is a number x and the output is a number 
f(x). For a vector field (or vector function), the input is a point (x, y) and the output 
is a two-dimensional vector F(x, y). There is a "field" of vectors, one at every point. 549 
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In three dimensions the input point is (x, y, z) and the output vector F has three 
components. 

DEFINITION Let R be a region in the xy plane. A vectorfield F assigns to every point 
(x, y) in R a vector F(x, y) with two components: 

F(x, y) = M(x, y)i + N(x,  y)j. (1)  
This plane vector field involves two functions of two variables. They are the compo- 
nents M and N, which vary from point to point. A vector has fixed components, a 
vector field has varying components. 

A three-dimensional vector field has components M(x, y, z) and N(x, y, z) and 
P(x, y, 2). Then the vectors are F = Mi + Nj + Pk. 

EXAMPLE 1 The position vector at (x, y) is R = xi + yj. Its components are M = x 
and N = y. The vectors grow larger as we leave the origin (Figure 15.la). Their 
direction is outward and their length is IRI = J;i?;i = r, The vector R is boldface, 
the number r is lightface. 

EXAMPLE 2 The vector field R/r consists of unit vectors u,, pointing outward. We 
divide R = xi + yj by its length, at every point except the origin. The components 
of Rlr are M = xlr and N = y/r. Figure 15.1 shows a third field ~ / r ~ ,  whose length 
is 1 /r. 

Fig. 15.1 The vector fields R and R/r and R/r2 are radial. Lengths r and 1 and l / r  

EXAMPLE 3 The spin field or rotation field or turning field goes around the origin 
instead of away from it. The field is S. Its components are M = - y and N = x: 

S = - yi + xj also has length IS1 = J(-y)2 + x2 = r. (2) 
S is perpendicular to R-their dot product is zero: S R = (- y)(x) + (x)(y) = 0. The 
spin fields S/r and S/r2 have lengths 1 and llr: 

The unit vector S/r is u,. Notice the blank at (O,O), where this field is not defined. 

Fig. 15.2 The spin fields S and S/r and S/r2 go around the origin. Lengths r and 1 and l /r .  
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EXAMPLE 4 A gradientfield starts with an ordinary function f(x, y). The components 
M and PJ are the partial derivatives df/dx and dfldy. Then the field F is the gradient 
off: 

F = grad f = Vf= dfldx i + dfldy j. (3) 

This vector field grad f is everywhere perpendicular to the level curves f(x, y) = c. The 
length lgrad f 1 tells how fast f is changing (in the direction it changes fastest). Invent 
a function like f = x2y, and you immediately have its gradient field F = 2xyi + x2j. 
To repealt, M is df/dx and N is dfldy. 

For every vector field you should ask two questions: Is it a gradient field? If so, 
what is f? Here are answers for the radial fields and spin fields: 

M A  The radial fields R and R/r and ~ / r ~  are a11 gradient fields. 
The spin fields S and S/r  are not gradients of any f(x, y), 
The spin field S/r2 is the gradient of the polar angle 0 = tan- '(ylx). 

The derivatives off = f(x2+ y2) are x and y. Thus R is a gradient field. The gradient 
off = r is the unit vector R/r pointing outwards. Both fields are perpendicular to 
circles around the origin. Those are the level curves off = f r2 and f = r. 

Question Is every R/rn a gradient field? 
Answer Yes. But among the spin fields, the only gradient is S/r2. 

A ma-jor goal of this chapter is to recognize gradient fields by a simple test. The 
rejection of S and S/r will be interesting. For some reason -yi + xj is rejected and 
yi + xj is accepted. (It is the gradient of .) The acceptance of S/r2 as the 
gradient off = 0 contains a surprise at the origin (Section 15.3). 

Gradient fields are called conservative. The function f is the potential function. 
These words, and the next examples, come from physics and engineering. 

EXAMPLE5 The velocity field is V and the flow field is pV. 

Suppose: fluid moves steadily down a pipe. Or a river flows smoothly (no waterfall). 
Or the air circulates in a fixed pattern. The velocity can be different at different points, 
but there is no change with time. The velocity vector V gives the direction offlow 
and speed of Jow at every point. 

In reality the velocity field is V(x, y, z), with three components M, N, P. Those are 
the velocities v,, v2, v, in the x, y, z directions. The speed (VI is the length: IVI2 = 
v: + v: -t v:. In a "plane flow" the k component is zero, and the velocity field is 
v , i+v2j= M i +  Nj. 

gravity 

F = - R//." 

Fig. 15.3 A steady velocity field V and two force fields F. 
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For a compact disc or a turning wheel, V is a spin field (V =US, co = angular 
velocity). A tornado might be closer to V =S/r2 (except for a dead spot at the center). 
An explosion could have V =R/r2. A quieter example is flow in and out of a lake 
with steady rain as a source term. 

TheJlowJield pV is the density p times the velocity field. While V gives the rate of 
movement, pV gives the rate of movement of mass. A greater density means a greater 
rate IpVJof "mass transport." It is like the number of passengers on a bus times the 
speed of the bus. 

EXAMPLE 6 Force fields from gravity: F is downward in the classroom, F is radial 
in space. 

When gravity pulls downward, it has only one nonzero component: F = -mgk. This 
assumes that vectors to the center of the Earth are parallel-almost true in a class- 
room. Then F is the gradient of -mgz (note dfldz = -mg). 
In physics the usual potential is not -mgz but +mgz. The force field is minus grad f 
also in electrical engineering. Electrons flow from high potential to low potential. 
The mathematics is the same, but the sign is reversed. 

In space, the force is radial inwards: F = -mMGR/r3. Its magnitude is propor- 
tional to l/r2 (Newton's inverse square law). The masses are m and M, and the 
gravitational constant is G =6.672 x 10-"--with distance in meters, mass in kilo- 
grams, and time in seconds. The dimensions of G are (force)(di~tance)~/(mass)~.This 
is different from the acceleration g =9.8m/sec2, which already accounts for the mass 
and radius of the Earth. 

Like all radial fields, gravity is a gradient field. It comes from a potential f: 

EXAMPLE 7 (a short example) Current in a wire produces a magnetic field B. It is 
the spin field S/r2 around the wire, times the strength of the current. 

STREAMLINES AND LINES OF FORCE 

Drawing a vector field is not always easy. Even the spin field looks messy when the 
vectors are too long (they go in circles and fall across each other). The circles give a 
clearer picture than the vectors. In any field, the vectors are tangent to "jield linesw- 
which in the spin case are circles. 

DEFINITION C is afield line or integral curve if the vectors F(x, y) are tangent to C. 
The slope dyldx of the curve C equals the slope N/M of the vector F =Mi +Nj: 

We are still drawing the field of vectors, but now they are infinitesimally short. 
They are connected into curves! What is lost is their length, because S and S/r and 
S/r2 all have the same field lines (circles). For the position field R and gravity field 
R/r3, the field lines are rays from the origin. In this case the "curves" are actually 
straight. 

EXAMPLE 8 Show that the field lines for the velocity field V =yi +xj are hyperbolas. 

dy N x-- --- * y dy =x dx *y2 -$x2 =constant. 
~ X - M - ~  
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reamlines x2 - y2  = C 

Fig. 15.4 Velocity fields are tangent to streamlines. Gradient fields also have equipotentials. 

At every point these hyperbolas line up with the velocity V. Each particle of fluid 
travels on afield line. In fluid flow those hyperbolas are called streamlines. Drop a 
leaf into a river, and it follows a streamline. Figure 15.4 shows the streamlines for a 
river going around a bend. 

Don't forget the essential question about each vector field. Is it a gradient field? 
For V = yi + xj the answer is yes, and the potential is f = xy: 

the gradient of xy is (8flax)i + (8flay)j = yi + xj. (7) 

When there is a potential, it has level curves. They connect points of equal potential, 
so the curves f (x, y) = c are called equipotentials. Here they are the curves xy = c- 
also hyperbolas. Since gradients are perpendicular to level curves, the streamlines are 
perpendicular to the equipotentials. Figure 15.4 is sliced one way by streamlines and 
the other way by equipotentials. 

A gradient field F = afldx i + afldy j is tangent to the field lines (stream- 
lines) and perpendicular to the equipotentials (level curves off). 

In the gradient direction f changes fastest. In the level direction f doesn't change at 
all. The chain rule along f (x, y) = c proves these directions to be perpendicular: 

af dx af d y  -- + - = 0 or (grad f )  (tangent to level curve) = 0. 
ax dt oy  dt 

EXAMPLE 9 The streamlines of S/r2 are circles around (0,O). The equipotentials are 
rays 0 = c. Add rays to Figure 15.2 for the gradient field S/r2. 

For the gravity field those are reversed. A body is pulled in along the field lines (rays). 
The equipotentials are the circles where f = l l r  is constant. The plane is crisscrossed 
by "orthogonal trajectories9'-curves that meet everywhere at right angles. 

If you bring a magnet near a pile of iron filings, a little shake will display the field 
lines. In a force field, they are "lines of force." Here are the other new words. 

Vector hid F, y, z) = Mi + Nj + Pk Plane field F = M(x, y)i + N(x, y)j 

Radial field: multiple of R = xi + yj + zk Spifl field: multiple of $ = - yi + xj 

Gradient ktd = conservative field: A4 = wax, N = af&, P = $18~ 

Potmtialf(x, yf (not a vector) Equipotential curves f(x, y) = c 

Streamline = field line = integral curve: a curve that has F(x, y) as its tangent 
vectors. 
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15.1 EXERCISES 

Read-through questions 

A vector field assigns a a to each point (x, y) or (x, y, z). 
In two dimensions F(x,y) = b i + c j. An example is 
the position field R = d . Its magnitude is IRI = e 

and its direction is f . It is the gradient field for f = 
g . The level curves are h , and they are i to 

the vectors R. 

Reversing this picture, the spin field is S = i . Its mag- 
nitude is IS1 = k and its direction is I . It is not a 
gradient field, because no function has af/ax = m and 
af/ay = n . S is the velocity field for flow going 0 . 
The streamlines or P lines or integral s are r . 
The flow field pV gives the rate at which s is moved 
by the flow. 

A gravity field from the origin is proportional to F = t 
which has IF1 = u . This is Newton's v square law. 
It is a gradient field, with potential f = w .The equipoten- 
tial curves f(x, y) = c are x . They are Y to the field 
lines which are . This illustrates that the A of a 
function f(x, y) is B to its level curves. 

The velocity field yi + xj is the gradient off = c . Its 
streamlines are D .The slope dyldx of a streamline equals 
the ratio E of velocity components. The field is F to 
the streamlines. Drop a leaf onto the flow, and it goes along 

G . 

Find a potential f(x, y) for the gradient fields 1-8. Draw the 
streamlines perpendicular to the equipotentials f(x, y) = c. 

1 F = i + 2j (constant field) 2 F = xi +j 

7 F=xyi+  j 8 F = & i +  j 

9 Draw the shear field F =xj. Check that it is not a gradient 
field: If af/ax =0 then af/ay =x is impossible. What are the 
streamlines (field lines) in the direction of F? 

10 Find all functions that satisfy af/ax = -y and show that 
none of them satisfy af/ay = x. Then the spin field S = 
-yi + xj is not a gradient field. 

Compute af/ax and af/ay in 11-18. Draw the gradient field 
F =padf and the equipotentials f(x, y) = c: 

15f=x2-y2  16 f = ex cos y 

Find equations for the streamlines in 19-24 by solving dyldx = 
N/M (including a constant C). Draw the streamlines. 

21 F =S (spin field) 22 F =S/r (spin field) 

23 F =grad (xly) 24 F =grad (2x + y). 

25 The Earth's gravity field is radial, but in a room the field 
lines seem to go straight down into the floor. This is because 
nearby field lines always look . 
26 A line of charges produces the electrostatic force field F = 
R/r2=(xi + yj)/(x2+ y2). Find the potential f(x, y). (F is also 
the gravity field for a line of =asses.) 

In 27-32 write down the vector fields Mi + Nj. 

27 F points radially away from the origin with magnitude 5. 

28 The velocity is perpendicular to the curves x3 + y3 =c and 
the speed is 1. 

29 The gravitational force F comes from two unit masses at 
(0,O) and (1,O). 

30 The streamlines are in the 45" direction and the speed is 4. 

31 The streamlines are circles clockwise around the origin 
and the speed is 1. 

32 The equipotentials are the parabolas y = x2+ c and F is 
a gradient field. 

33 Show directly that the hyperbolas xy = 2 and x2 -y2 = 3 
are perpendicular at the point (2, l), by computing both slopes 
dyldx and multiplying to get -1. 

34 The derivative off (x, y) = c isf, +f,(dy/dx) =0. Show that 
the slope of this level curve is dyldx = -MIN. It is perpendic- 
ular to streamlines because (- M/N)(N/M)= . 

35 The x and y derivatives of f(r) are dfldx = and 
dflay =-by the chain rule. (Test f =r2.) The equi- 
potentials are . 

36 F = (ax + by)i + (bx + cy)j is a gradient field. Find the 
potential f and describe the equipotentials. 

37 True or false: 
I.  The constant field i + 2k is a gradient field. 
2. For non-gradient fields, equipotentials meet stream- 
lines at non-right angles. 
3. In three dimensions the equipotentials are surfaces 
instead of curves. 
4. F = x2i+ y2j+ z2k points outward from (0,0,0)-
a radial field. 

38 Create and draw f and F and your own equipotentials 
and streamlines. 
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39 How can different vector fields have the same streamlines? 40 Draw arrows at six or eight points to show the direction 
Can they have the same equipotentials? Can they have the and magnitude of each field: 
same f?  (a) R + S  (b) Rlr -S/r (c) x2i+x2j (d)yi. 

15.2 Line Integrals .- 
A line integral is an integral along a curve. It can equal an area, but that is a special 
case and not typical. Instead of area, here are two important line integrals in physics 
and engineering: 

Work along a curve = F T ds Flow across a curve = 

In the first integral, F is a force field. In the second integral, F is a flow field. Work 
is done in the direction of movement, so we integrate F T. Flow is measured through 
the curve C, so we integrate F n. Here T is the unit tangent vector, and F T is the 
force cornponent along the curve. Similarly n is the unit normal vector, at right angles 
with T. Then F n is the component of flow perpendicular to the curve. 

We will write those integrals in several forms. They may never be as comfortable 
as J y(x) dx, but eventually we get them under control. I mention these applications 
early, so you can see where we are going. This section concentrates on work, and 
flow comes later. (It is also calledflux-the Latin word for flow.) You recognize ds 
as the step along the curve, corresponding to dx on the x axis. Where f dx gives the 
length of an interval (it equals b - a), 5 ds is the length of the curve. 

EXAMPLE 1 Flight from Atlanta to Los Angeles on a straight line and a semicircle. 

According to Delta Airlines, the distance straight west is 2000 miles. Atlanta is at 
(1000,O) and Los Angeles is at (-1000, O), with the origin halfway between. The 
semicircle route C has radius 1000. This is not a great circle route. It is more of a 
"flat circle," which goes north past Chicago. No plane could fly it (it probably goes 
into space). 

The equation for the semicircle is x2 + y2 = 10002. Parametrically this path is x = 
1000 cos t, y = 1000 sin t. For a line integral the parameter is better. The plane leaves 
Atlanta at t = 0 and reaches L.A. at t = n, more than three hours later. On the straight 
2000-mile path, Delta could almost do it. Around the semicircle C, the distance is 
lOOOn miles and the speed has to be 1000 miles per hour. Remember that speed is 
distance ds divided by time dt: 

dsldt = ,/(dx~dt)~ + (dyldt)' = l000,/(- sin t)2 + (cos t)2 = 1000. (1) 

The tangent vector to C is proportional to (dxldt, dyldt) = (-1000 sin t, 1000 cos t). 
But T is a unit vector, so we divide by 1000-which is the speed. 

Suppose the wind blows due east with force F = Mi. The components are M and 
zero. Foir M =constant, compute the dot product F * T  and the work -2000 M: 

F w T =  Mi*(-sin t i+cos  t j ) =  M(-sin t)+O(cos t ) =  - M sin t 
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Work is force times distance moved. It is negative, because the wind acts against the 
movement. You may point out that the work could have been found more simply- 
go 2000 miles and multiply by - M. I would object that this straight route is a 
dzrerent path. But you claim that the path doesn't matter-the work of the wind is 
-2000M on every path. I concede that this time you are right (but not always). 

Most line integrals depend on the path. Those that don't are crucially important. 
For a gradient field, we only need to know the starting point P and the finish Q. 

158 When F is the gradient of a potential function f (x, y), the work J, F T ds 
depends only on the endpoints P and Q. The work is the change in$ 

if F = afpx i + af/ay j then F T ds = f (Q) -f(P). 

When F = Mi, its components M and zero are the partial derivatives off = Mx. To 
compute the line integral, just evaluate f at the endpoints. Atlanta has x = 1000, Los 
Angeles has x = - 1000, and the potential function f = Mx is like an antiderivative: 

work = f (Q) - f (P) = M(- 1000) - M(1000) = - 2000M. (3) 

LAX LAX 
- 1000 , - 1000 1000 

J F . Tdr = - 2000M depends on path 

Fig. 15.5 Force Mi, work -2000M on all paths. Force Myi, no work on straight path. 

May I give a rough explanation of the work integral 5 F T ds? It becomes clearer 
when the small movement Tds is written as dx i + dy j. The work is the dot product 
with F: 

The infinitesimal work is df: The total work is 5 df= f(Q) - f (P). This is the Fundamen- 
tal Theorem for a line integral. Only one warning: When F is not the gradient of any 
f (Example 2), the Theorem does not apply. 

EXAMPLE 2 Fly these paths against the non-constant force field F = Myi. Compute 
the work. 

There is no force on the straight path where y = 0. Along the x axis the wind does 
no work. But the semicircle goes up where y = 1000 sin t and the wind is strong: 

F * T = ( M y i ) * ( - s i n t i + c o s t j ) =  -My sin t =  - lOOOM sin2t 

This work is enormous (and unrealistic). But the calculations make an important 
point-everything is converted to the parameter t. The second point is that F = Myi 
is not a gradient field. First reason: The work was zero on the straight path and 
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nonzero on the semicircle. Second reason: No function has df/ dx = My and df /dy = 

0. (The first makes f depend on y and the second forbids it. This F is called a shear 
force.) Without a potential we cannot substitute P and Q-and the work depends 
on the path. 

THE DEFINITION OF LINE INTEGRALS 

We go back to the start, to define F T ds. We can think of F T as a function g(x, y) 
along the path, and define its integral as a limit of sums: 

N IC g ( ~ ,  y) ds = limit of &xi, yi)Asi as (As),,,., -i 0. 
i=  1 

( 5 )  

The points (xi, y,) lie on the curve C. The last point Q is (x,, y,); the first point P is 
(xo, yo). The step Asi is the distance to (xi, yi) from the previous point. As the steps 
get small (As -, 0) the straight pieces follow the curve. Exactly as in Section 8.2, the 
special case g = 1 gives the arc length. As long as g(x, y) is piecewise continuous 
(jumps allowed) and the path is piecewise smooth (corners allowed), the limit exists 
and defines the line integral. 

When g is the density of a wire, the line integral is the total mass. When g is F T, 
the integral is the work. But nobody does the calculation by formula (5). We now 
introduce a parameter t-which could be the time, or the arc length s, or the distance 
x along the base. 

The diflerential ds becomes (ds/dt)dt. Everything changes over to t: 

The curve starts when t = a, runs through the points (x(t), y(t)), and ends when t = b. 
The square root in the integral is the speed dsldt. In three dimensions the points on 
C are (x(t), y(t), z(t)) and (dz/dt)l is in the square root. 

EXAMPLE 3 The points on a coil spring are (x, y, z) = (cos t, sin t, t). Find the mass 
of two complete turns (from t = 0 to t = 4 4  if the density is p = 4. 

Solution The key is ( d ~ / d t ) ~  + ( d ~ / d t ) ~  + ( d ~ l d t ) ~  = sin2t + cos2t + 1 = 2. Thus 
dsldt = fi. To find the mass, integrate the mass per unit length which is g = p = 4: 

That is a line integral in three-dimensional space. It shows how to introduce t. But 
it misses the main point of this section, because it contains no vector field F. This 
section is about work, not just mass. 

DIFFERENT FORMS OF THE WORK INTEGRAL 

The work integral I F  T ds can be written in a better way. The force is F = Mi + Nj. 
A small step along the curve is dx i + dy j. Work is force times distance, but it is only 
the force component along the path that counts. The dot product F -Tds  finds that 
component automatically. 
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I 15C The vector to a point on C is R = xi + yj. Then dR = Tds = dx i + dy j: 

I Along a space curve the work is j F * ~ d s = f ~ * d ~ = j ~ d x + ~ d ~ +  ~ d z .  

The product M dx is (force in x direction)(movement in x direction). This is zero if 
either factor is zero. When the only force is gravity, pushing a piano takes no work. 
It is friction that hurts. Carrying the piano up the stairs brings in Pdz, and the total 
work is the piano weight P times the change in z. 

To connect the new I F dR with the old I F  * T  ds, remember the tangent vector 
T. It is dRlds. ~herefoie Tds is dR. The best for computations is dR, because the 
unit vector T has a division by dsldt = , / ( d ~ / d t ) ~  + ( d ~ l d t ) ~ .  Later we multiply by this 
square root, in converting ds to (dsldtjdt. It makes no sense to compute the square 
root, divide by it, and then multiply by it. That is avoided in the improved form 
~ M ~ x + N ~ Y .  

EXAMPLE 4 Vector field F = - yi + xj, path from (1,O) to (0, 1): Find the work. 

Note 1 This F is the spin field S. It goes around the origin, while R = xi + yj goes 
outward. Their dot product is F R = - yx + xy = 0. This does not mean that 
F dR = 0. The force is perpendicular to R, but not to the change in R. The work to 
move from (I, 0) to (0, I), x axis to y axis, is not zero. 
Note 2 We have not described the path C. That must be done. The spin field is not 
a gradient field, and the work along a straight line does not equal the work on a 
quarter-circle: 

straight line x = 1 - t, y = t quarter-circle x = cos t, y = sin t. 

Calculation of work Change F dR = M dx + N dy to the parameter t: 

Straight line: - y dx + x dy = - t(- dt) + (1 - t)dt = 1 l lo1 

S 7T 
Quarter-circle: - y dx + x dy = -sin t(- sin t dt) + cos t(cos t dt) = -. 

2 

General method The path is given by x(t) and y(t). Substitute those into M(x, y) 
and N(x, y)-then F is a function of t. Also find dxldt and dyldt. Integrate 
M dxldt + N dyldt from the starting time t to the finish. 

I work 7[: / 2 no work ' 
work F.dR = 1 

Fig.15.6 T h r e e p a t h ~ f o r ~ F ~ d R = ~ - ~ d x + . u d y = l , n / 2 , 0 .  
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For practice, take the path down the x axis to the origin (x = 1 - t, y = 0). Then 
go up the y axis (x = 0, y = t - 1). The starting time at (1,O) is t = 0. The turning time 
at the origin is t = 1. The finishing time at (0, 1) is t = 2. The integral has two parts 
because this new path has two parts: 

Bent path: J -ydx+xdy=O+O (y=O on one part, then x=O). 

Note 3 The answer depended on the path, for this spin field F = S. The answer did 
not depend on the choice of parameter. If we follow the same path at a different 
speed, the work is the same. We can choose another parameter 2, since (ds/dt)dt and 
(ds/dz)dz both equal ds. Traveling twice as fast on the straight path (x = 1 - 22, 
y = 22) we finish at t = 4 instead of t = 1. The work is still 1: 

CONSERVNION OF TOTAL ENERGY (KINETIC + POTENTIAL) 

When a force field does work on a mass m, it normally gives that mass a new velocity. 
Newton's Law is F =ma = mdvldt. (It is a vector law. Why write out three compo- 
nents?) The work F dR is 

J (m dvldt) (v dt) = *mv v]: = $mv(Q)12 - $mlv(P)12. 

The work equals the change in the kinetic energy 4mlv12. But for a gradient field the 
work is also the change in potential-with a minus sign from physics: 

Comparing (8) with (9), the combination $m1vl2 + f is the same at P and Q. The total 
energy, kinetic plus potential, is conserved. 

INDEPENDENCE OF PATH: GRADIENT FIELDS 

The work of the spin field S depends on the path. Example 4 took three paths- 
straight line, quarter-circle, bent line. The work was 1, 42 ,  and 0, different on each 
path. This happens for more than 99.99% of all vector fields. It does not happen for 
the most important fields. Mathematics and physics concentrate on very special 
fields-for which the work depends only on the endpoints. We now explain what 
happens, when the integral is independent of the path. 

Suppose you integrate from P to Q on one path, and back to P on another path. 
Combined, that is a closed path from P to P (Figure 15.7). But a backward integral 
is the negative of a forward integral, since dR switches sign. If the integrals from P 
to Q are equal, the integral around the closed path is zero: 

closed path 1 back path 2 path 1 path 2 

The circle on the first integral indicates a closed path. Later we will drop the P's. 
Not all closed path integrals are zero! For most fields F, different paths yield 

different work. For "conservative" fields, all paths yield the same work. Then zero 
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work around a closed path conserves energy. The big question is: How to decide 
which fields are conservative, without trying all paths? Here is the crucial information 
about conservative fields, in a plane region R with no holes: 

15D F = M(x,  y)i + N(x ,  y)j is a conservative field if it has these properties: 

A. The work J F dR around every closed path is zero. 

B. The work F d R depends only on P and Q, not on the path. 

C. F is a gradient field: M = df/ax and N = df/dy for some potential f ( x ,  y). 

D. The components satisfy dM/ay = (3Nldx. 

A field with one of these properties has them all. D is the quick test. 

These statements A-D bring everything together for conservative fields (alias gradient 
fields). A closed path goes one way to Q and back the other way to P. The work 
cancels, and statements A and B are equivalent. We now connect them to C. Note: 
Test D says that the "curl" of F is zero. That can wait for Green's Theorem in the 
next section-the full discussion of the curl comes in 15.6. 

First, a gradient field F = grad f is conservative. The work is f (Q) - f (P), by the 
fundamental theorem for line integrals. It depends only on the endpoints and not the 
path. Therefore statement C leads back to B. 

Our job is in the other direction, to show that conservative fields Mi + Nj are 
gradients. Assume that the work integral depends only on the endpoints. We must 
construct a potentialf, so that F is its gradient. In other words, dfldx must be M and 
dfldy must be N. 

Fix the point P .  Define f (Q) as the work to reach Q. Then F equals grad& 

Check the reasoning. At the starting point P, f is zero. At every other point Q, f is 
the work J M dx + N dy to reach that point. Allpathshsfom P to Q give the same f(Q), 
because the field is assumed conservative. After two examples we prove that grad f 
agrees with F-the construction succeeds. 

back path 2 - 

Fig. 15.7 Conservative fields: $ F d R  = 0 and j@ F d R = f ( Q )  - f (P ) .  Here f ( P )  = 0. 

EXAMPLE 5 Find f ( x ,  y) when F = Mi + Nj = 2xyi + x2j. We want (: f /ax = 2xy 
and df ldy = x2.  

Solution 1 Choose P = (0,O). Integrate M dx + N dy along to ( x ,  0) and up to (x, y) :  

(x. 0 )  0, Y )  

2xy dx = 0 (since y = 0) x2dY = x 2 y  (which is f ). 
(0 .0 )  S S (x, 0 )  

Certainly f = x2y meets the requirements: f, = 2xy and f, = x2. Thus F = gradf Note 
that dy = 0 in the first integral (on the x axis). Then dx = 0 in the second integral 
(X is fixed). The integrals add to f = x2y. 
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Solution 2 Integrate 2xydx  + x2dy on the straight line (x t ,  yt) from t = 0 to t = 1: 

2(xt)(yt)(x dt) + ( ~ t ) ~ ( yIol dt)= So13x2yt2dt= x2yt3]: = x2y. 

Most authors use Solution 1. I use Solution 2. Most students use Solution 3: 

Solution 3 Directly solve df /dx  = M = 2xy and then fix up dfldy = N = x2: 

af/dx = 2xy gives f = x2y (plus any function of y). 

In this example x2y already has the correct derivative dfldy = x2. No additional 
function of y is necessary. When we integrate with respect to x,  the constant of 
integration (usually C ) becomes a function C(y). 

You will get practice in finding f. This is only possible for conservative fields! I 
tested M = 2xy and N = x2 in advance (using D) to be sure that dM/dy = dN/dx.  

EXAMPLE 6 Look for f ( x ,  y) when Mi + Nj is the spin field -yi + xj. 

Attempted solution 1 Integrate -y dx  + x dy from (0,O) to (x ,  0 )  to (x ,  y): 

I(x, 0) 

- y d x = O  and I(x. Y) 

x dy = x y  (which seems like f ) .  
(0,O) (x. 0) 

Attempted solution 2 Integrate -y dx  + x dy on the line (x t ,  yt) from t = 0 to 1 : 

So1-(y t ) (x  dt) + (x t ) (y  dt) = 0 (a different f, also wrong). 

Aitempted solution 3 Directly solve dfldx = -y and try to fix up af/dy = x :  

af /dx  = -y gives f = -x y  (plus any function C(y)). 

The y derivative of this f is - x  + dC/dy. That does not agree with the required 
dfldy = x. Conclusion: The spin field -yi + xj is not conservative. There is no f. 
Test D gives dM/dy = - 1 and dN/dx = + 1.  

To finish this section, we move from examples to a proof. The potential f (Q)  is 
defined as the work to reach Q. We must show that its partial derivatives are M and 
N. This seems reasonable from the formula f (Q)  = I M dx  + N dy, but we have to 
think it through. 

Remember statement A, that all paths give the same f(Q). Take a path that goes 
from P to the left of Q. It comes in to Q on a line y = constant (so dy = 0). As the 
path reaches Q, we are only integrating M dx. The derivative of this integral, at Q, is 
df/ax = M. That is the Fundamental Theorem of Calculus. 

To show that af/ay= N, take a different path. Go from P to a point below Q. The 
path comes up to Q on a vertical line (so dx  = 0). Near Q we are only integrating 
N dy, so i?f/dy= N. 

The requirement that the region must have no holes will be critical for test D. 

EXAMPLE 7 Find f ( x ,  y) = x dx  + y dy. Test D is passed: aN/ax= 0= dM/dy. 

Solution 1 j:",: x dx  = +x2is added to j::;:; y dy = fy2. 

Solution 2 1; (x t ) (x  dt) + (y t ) (y  dt) = 1; (x2+ y2)t dt = f ( x 2+ y2). 

Solution 3 afjax = x gives f = +x2+ C(y).Then af/dy = y needs C(y)= :y2. 
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15.2 EXERCISES 

Read-through questions 

Work is the a of F dR. Here F is the b and R is 
the c . The d product finds the component of 
in the direction of movement dR = dxi + dyj. The straight 
path (x, y) = (t, 2t) goes from f at t = 0 to g at t = 
1 withdR=dt i+ h .TheworkofF=3i+j isjF=dR= 
j i d t=  i . 

Another form of d R is T ds, where T is the k vector to 
the path and ds = ,/T. For the path (t, 2t), the unit vector 
T i s  m andds= n dt.ForF=3i+j ,F*Tdsisst i l l  

0 dt. This F is the gradient off = P . The change in 
f= 3x + y  from (0,O) to (1,2) is q . 

When F = gradf, the dot product F dR is (af/dx)dx + 
r = df: The work integral from P to Q is j df = s . 

In this case the work depends on the t but not on the 
u . Around a closed path the work is v . The field is 

called w . F = (1 + y)i + xj is the gradient off = x . 
The work from (0,O) to (1,2) is Y , the change in potential. 

For the spin field S = 2 , the work (does)(does not) 
depend on the path. The path (x, y) = (3 cos t, 3 sin t) is a 
circle with S g d R  = A . The work is B around the 
complete circle. Formally jg(x, y)ds is the limit of the sum 

c .  

The four equivalent properties of a conservative field F = 
Mi+ Nj are A: D , B: E , C: F , and D: G . 
Test D is (passed)(not passed) by F = (y + 1)i + xj. The work 
I F  dR around the circle (cos t, sin t) is H . The work on 
the upper semicircle equals the work on I . This field is 
the gradient off = J , so the work to (- 1,0) is K . 

Compute the line integrals in 1-6. 

jcds and jcdy: x = t, y = 2t, 0 6 t < 1. 

fcxds and jcxyds: x=cost ,  y=sint ,  O<t<n/2.  

S, xy ds: bent line from (0,O) to (1, 1) to (1,O). 

1, y dx - x dy: any square path, sides of length 3. 

fc dx and jc y dx: any closed circle of radius 3. 

Jc (dsldt) dt: any path of length 5. 

Does if xy dy equal f xy2]:? 

Does jfx dx equal fx2]:? 

Does (jc d ~ ) ~  = (IC d ~ ) ~  + (fC dy)l? 

Does jc ( d ~ ) ~  make sense? 

11-16 find the work in moving from (1,O) to (0,l). When F 
is conservative, construct f: choose your own path when F is 
not conservative. 

11 F = i + y j  12 F = y i + j  

17 For which powers n is S/rn a gradient by test D? 

18 For which powers n is R/rn a gradient by test D? 

19 A wire hoop around a vertical circle x2 + z2 = a2 has 
density p = a + z. Find its mass M = pds. 

20 A wire of constant density p lies on the semicircle 
x2 + Y2 = a2, y 3 0. Find its mass M and also its moment 
Mx = 1 py ds. Where is its center of mass 2 = My/M, j = Mx/ 
M? 

21 If the density around the circle x2 + y2 = a2 is p = x2, what 
is the mass and where is the center of mass? 

22 Find F dR along the space curve x = t, y = t2, z = t3, 
O < t < l .  

(a) F = grad (xy + xz) (b) F = yi - xj + zk 

23 (a) Find the unit tangent vector T and the speed dsldt 
along the path R = 2t i + t2 j. 
(b) For F = 3xi + 4j, find F T ds using (a) and F dR 
directly. 
(c) What is the work from (2, 1) to (4,4)? 

24 If M(x, y, z)i + N(x, y, z)j is the gradient of f(x, y, z), show 
that none of these functions can depend on z. 

25 Find all gradient fields of the form M(y)i + N(x)j .  

26 Compute the work W(x, y) = j M dx + N dy on the 
straight line path (xt, yt) from t = 0 to t = 1. Test to see if aW/ 
ax = M and aWpy = N. 

(a) M = y3, N = 3xy2 (b) M = x3, N = 3yx2 
(c )M=x/y ,N=y/x  (d)M=ex+Y,N=e"+Y 

27 Find a field F whose work around the unit square (y = 0 
then x = 1 then y = 1 then x = 0) equals 4. 

28 Find a nonconservative F whose work around the unit 
circle x2 + y2 = 1 is zero. 

In 29-34 compute 1 F dR along the straight line R = ti + tj 
and the parabola R = ti + t2j, from (0,O) to (1,l). When F is a 
gradient field, use its potential f (x, y). 

29 F = i - 2 j  30 F = x2j 

33 F=yi -x j  34 F = (xi + yj)/(x2 + y2 + 1) 

35 For which numbers a and b is F = axyi + (x2 + by)j a 
gradient field? 

36 Compute j - y dx + x dy from (1,O) to (0,l) on the line 
x = 1 - t2, y = t2 and the quarter-circle x = cos 2t, y = sin 2t. 
Example 4 found 1 and n/2 with different parameters. 
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Apply the test N x  = My to 37-42. Find f when test D is passed. 43 Around the unit circle find 4 ds and $ dx and 8 xds. 

44 True or false, with reason: 
(a) When F = yi the line integral l F e d R  along a curve 

xi + yj grad xy from P to Q equals the usual area-under the curve. 
39 F=- 40 I?=- 

Ixi + J# 1 grad XY 1 (b) That line integral depends only on P and Q, not on the 
curve. 

41 F = R + S  42 F =(ax + by)i + (cx + dy)j (c) That line integral around the unit circle equals n. 

15.3 Green's Theorem 

This section contains the Fundamental Theorem of Calculus, extended to two dimen- 
sions. That sounds important and it is. The formula was discovered 150 years after 
Newton and Leibniz, by an ordinary mortal named George Green. His theorem 
connects a double integral over a region R to a line integral along its boundary C.  

The integral of dfldx equals f(b) - f (a). This connects a one-dimensional integral 
to a zero-dimensional integral. The boundary only contains two points a and b! The 
answer f (b) - f (a) is some kind of a "point integral." It is this absolutely crucial idea- 
to integrate a derivative from information at the boundary-that Green's Theorem 
extends into two dimensions. 

There are two important integrals around C. The work is I F T ds = I M dx + N dy. 
The flux is 1 F n ds = M dy - N dx (notice the switch). The first is for a force field, 
the second is for a flow field. The tangent vector T turns 90" clockwise to become 
the normal vector n. Green's Theorem handles both, in two dimensions. In three 
dimensions they split into the Divergence Theorem (1 5.5) and Stokes' Theorem (1 5.6). 

Green's Theorem applies to "smooth" functions M(x, y) and N(x, y), with con- 
tinuous first derivatives in a region slightly bigger than R. Then all integrals are well 
defined. M and N will have a definite and specific meaning in each application-to 
electricity or magnetism or fluid flow or mechanics. The purpose of a theorem is to 
capture the central ideas once and for all. We do that now, and the applications 
follow. 

1SE Green's TIreorm Suppose the region R is bounded by the simple 
closed piecewise smooth curve C. Thm an integral over R equals a line integral 
around C: 

A curve is "simple" if it doesn't cross itself (figure 8's are excluded). It is "closed" if 
its endpoint Q is the same as its starting point P. This is indicated by the closed circle 
on the integral sign. The curve is "smooth" if its tangent T changes continuously- 
the word "piecewise" allows a finite number of corners. Fractals are not allowed, but 
all reasonable curves are acceptable (later we discuss figure 8's and rings). First comes 
an understanding of the formula, by testing it on special cases. 
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x1d)
strip area (X2 -x1)dy

x2dy

Fig. 15.8 Area of R adds up strips: x dy = ff dx dy and f y dx = -fI dy dx.

Special case 1: M = 0 and N = x. Green's Theorem with ON/ax = 1 becomes

x dy = ff1 dx dy (which is the area of R). (2)

The integrals look equal, because the inner integral of dx is x. Then both integrals
have x dy-but we need to go carefully. The area of a layer of R is dy times the
difference in x (the length of the strip). The line integral in Figure 15.8 agrees. It has
an upward dy times x (at the right) plus a downward -dy times x (at the left). The
integrals add up the strips, to give the total area.

Special case 2: M = y and N = 0 and fc y dx = fR(-1) dx dy= -(area of R).

Now Green's formula has a minus sign, because the line integral is counterclockwise.
The top of each slice has dx < 0 (going left) and the bottom has dx > 0 (going right).
Then y dx at the top and bottom combine to give minus the area of the slice in
Figure 15.8b.

Special case 3: f 1 dx = 0. The dx's to the right cancel the dx's to the left (the curve
is closed). With M = 1 and N = 0, Green's Theorem is 0 = 0.

Most important case: Mi + Nj is a gradient field. It has a potential function f(x, y).
Green's Theorem is 0 = 0, because aMlay = aN/ax. This is test D:

My Oy xa (a is the same as ax = (3)ey y Fx Ox ax /y
The cross derivatives always satisfy f,y =fx,. That is why gradient fields pass test D.

When the double integral is zero, the line integral is also zero: fc M dx + N dy = 0.
The work is zero. The field is conservative! This last step in A => B => C => D = A will
be complete when Green's Theorem is proved.

Conservative examples are fx dx = 0 and f y dy = 0. Area is not involved.

Remark The special cases x dy and - ydx led to the area of R. As long as
1 = aN/ax - aM/ay, the double integral becomes ff 1 dx dy. This gives a way to com-
pute area by a line integral.

The area ofR is xdy= - ydx= - (x dy - ydx). (4)

EXAMPLE 1 The area of the triangle in Figure 15.9 is 2. Check Green's Theorem.

The last area formula in (4) uses -S, half the spin field. N = ½x and M = - ½y yield
Nx - My = + 1 = 1. On one side of Green's Theorem is ff1 dx dy = area of triangle.
On the other side, the line integral has three pieces.
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(0, 2) (0, b)

x=0

(2, 0)

os t
= b sin t

(a, 0)

y=0
Fig. 15.9 Green's Theorem: Line integral around triangle, area integral for ellipse.

Two pieces are zero: x dy - y dx = 0 on the sides where x = 0 and y = 0. The sloping
side x = 2 - y has dx = - dy. The line integral agrees with the area, confirming
Green's Theorem:

xdy-ydx= f=(2 - y)dy + ydy = 2dy = 2.

EXAMPLE 2 The area of an ellipse is nrab when the semiaxes have lengths a and b.

This is a classical example, which all authors like. The points on the ellipse are
x = a cos t, y = b sin t, as t goes from 0 to 21r. (The ellipse has (x/a)2 + (y/b)2 = 1.)
By computing the boundary integral, we discover the area inside. Note that the
differential x dy - y dx is just ab dt:

(a cos t)(b cos t dt) - (b sin t)(- a sin t dt) = ab(cos2t + sin2 t)dt = ab dt.

The line integral is _o2 ab dt = 7nab. This area nab is 7rr2, for a circle with a = b = r.

Proof of Green's Theorem: In our special cases, the two sides of the formula were
equal. We now show that they are always equal. The proof uses the Fundamental
Theorem to integrate (aN/ax)dx and (aM/dy)dy. Frankly speaking, this one-dimen-
sional theorem is all we have to work with-since we don't know M and N.

The proof is a step up in mathematics, to work with symbols M and N instead of
specific functions. The integral in (6) below has no numbers. The idea is to deal with
M and N in two separate parts, which added together give Green's Theorem:

fM dx a= dx dy and separately N dy= - dx dy. (5)
cdxJR - ay Nc y axJ

Start with a "very simple" region (Figure 15.10a). Its top is given by y =f(x) and
its bottom by y = g(x). In the double integral, integrate - aM/ay first with respect to
y. The inner integral isTf(x) dy M (x)

S.y = - M(x, Y) (x) = - M(x, f(x)) + M(x, g(x)). (6)
g(x) ay

The Fundamental Theorem (in the y variable) gives this answer that depends on x.
If we knew M and f and g, we could do the outer integral-from x = a to x = b. But
we have to leave it and go to the other side of Green's Theorem-the line integral:

M dx = M(x, y)dx + bot M(x, y)dx += f M(x, f(x))dx + fa M(x, g(x))dx. (7)
top bottomba

565



15 Vector Calculus

P
- Mdx

-f Ndy

W() J Mdx

Fig. 15.10 Very simple region (a-b). Simple region (c) is a union of very simple regions.

Compare (7) with (6). The integral of M(x, g(x)) is the same for both. The integral of
M(x,f(x)) has a minus sign from (6). In (7) it has a plus sign but the integral is from
b to a. So life is good.

The part for N uses the same idea. Now the x integral comes first, because
(0N/ax)dx is practically asking to be integrated-from x = G(y) at the left to x = F(y)
at the right. We reach N(F(y), y) - N(G(y), y). Then the y integral matches § Ndy and
completes (5). Adding the two parts of (5) proves Green's Theorem.

Finally we discuss the shape of R. The broken ring in Figure 15.10 is not "very
simple," because horizontal lines go in and out and in and out. Vertical lines do the
same. The x and y strips break into pieces. Our reasoning assumed no break between
y =f(x) at the top and y = g(x) at the bottom.

There is a nice idea that saves Green's Theorem. Separate the broken ring into
three very simple regions R 1, R2, R 3 . The three double integrals equal the three line
integrals around the R's. Now add these separate results, to produce the double
integral over all of R. When we add the line integrals, the crosscuts CC are covered
twice and they cancel. The cut between R1 and R2 is covered upward (around R1 )
and downward (around R 2). That leaves the integral around the boundary equal to
the double integral inside-which is Green's Theorem.

When R is a complete ring, including the piece R4 , the theorem is still true. The
integral around the outside is still counterclockwise. But the integral is clockwise
around the inner circle. Keep the region R to your left as you go around C. The
complete ring is "doubly" connected, not "simply" connected. Green's Theorem
allows any finite number of regions Ri and crosscuts CC and holes.

EXAMPLE 3 The area under a curve is jb y dx, as we always believed.

In computing area we never noticed the whole boundary. The true area is a line
integral - y dx around the closed curve in Figure 15.11 a. But y = 0 on the x axis.
Also dx = 0 on the vertical lines (up and down at b and a). Those parts contribute
zero to the integral of y dx. The only nonzero part is back along the curve-which
is the area - a y dx or I' y dx that we know well.

What about signs, when the curve dips below the x axis? That area has been
counted as negative since Chapter 1. I saved the proof for Chapter 15. The reason
lies in the arrows on C.

The line integral around that part goes the other way. The arrows are clockwise,
the region is on the right, and the area counts as negative. With the correct rules, a
figure 8 is allowed after all.
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dx =

b
-ydx =aydx F= S/r 2

b f f=0=0
.=. ff= 6 = 2x

ix = 0infinite spin

e tt a center /F -dR = 2xr

Fig. 15.11 Closed path gives the sign of the area. Nonconservative field because of hole.

CONSERVATIVE FIELDS

We never leave gradients alone! They give conservative fields-the work around a
closed path is f(P) -f(P) = 0. But a potential function f(x, y) is only available when
test D is passed: If Of/ax = M and af/Oy = N then dM/ly = aN/ax. The reason is that

fxy =fx .
Some applications prefer the language of "differentials." Instead of looking for

f(x, y), we look for df:

DEFINITION The expression M(x, y)dx + N(x, y)dy is a differential form. When it
agrees with the differential df= (df/Ox)dx + (f/aOy) dy of some function, the form
is called exact. The test for an exact differential is D: ON/Ox = OM/ay.

Nothing is new but the language. Is y dx an exact differential? No, because My = 1
and Nx = 0. Is y dx + x dy an exact differential? Yes, it is the differential of f= xy.
That is the product rule! Now comes an important example, to show why R should
be simply connected (a region with no holes).

EXAMPLE 4 The spin field S/r 2 = (- yi + xj)/(x 2 + y 2) almost passes test D.

( x x2  y 2 -x(2x) M a(-y (X2 + y 2)+y(2y)N= -M-(8)
X• -~x~2 (X + y 2)2  (X2 y 2)2

Both numerators are y2- x2 . Test D looks good. To find f, integrate M = Of/ax:

f(x, y) = - y dx/(x2 + y2) = tan- (yx) + C(y).

The extra part C(y) can be zero--the y derivative of tan- '(y/x) gives N with no help
from C(y). The potentialf is the angle 0 in the usual x, y, r right triangle.

Test D is passed and F is grad 0. What am I worried about? It is only this,
that Green's Theorem on a circle seems to give 27r = 0. The double integral is
ff (Nx - My)dx dy. According to (8) this is the integral of zero. But the line integral is
27r:

F* dR = (- y dx + x dy)/(x 2 + y2)= 2(area of circle)/a 2 = 2ra2/a2 = 27. (9)

With x = a cos t and y = a sin t we would find the same answer. The work is 27r (not
zero!) when the path goes around the origin.

We have a paradox. If Green's Theorem is wrong, calculus is in deep trouble. Some
requirement must be violated to reach 27t = 0. Looking at S/r 2 , the problem is at the
origin. The field is not defined when r = 0 (it blows up). The derivatives in (8) are not
continuous. Test D does not apply at the origin, and was not passed. We could remove
(0, 0), but then the region where test D is passed would have a hole.
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It is amazing how one point can change everything. When the path circles the 
origin, the line integral is not zero. The potential function f = 8 increases by 27r. That 
agrees with I F d R = 27r from (9). It disagrees with I10 dx dy. The 27r is right, the zero 
is wrong. Nx - My must be a "delta function of strength 2n." 

The double integral is 27r from an infinite spike over the origin-even though N, = 
My everywhere else. In fluid flow the delta function is a ''vortex." 

FLOW ACROSS A CURVE: GREEN'S THEOREM TURNED BY 90" 

A flow field is easier to visualize than a force field, because something is really there 
and it moves. Instead of gravity in empty space, water has velocity M(x, y)i + N(x, y)j. 
At the boundary C it can flow in or out. The new form of Green's Theorem is a 
fundamental "balance equation" of applied mathematics: 

Flow through C (out minus in) = replacement in R (source minus sink). 

The flow is steady. Whatever goes out through C must be replaced in R. When there 
are no sources or sinks (negative sources), the total flow through C must be zero. 
This balance law is Green's Theorem in its "normal form" (for n) instead of its 
"tangential form" (for T): 

C 

15F For a steady flow field F = M(x, y)i + N(x, y)j, the flux 1 F n ds through 
the boundary C balances the replacement of fluid inside R: 

Figure 15.12 shows the 90" turn. T becomes n and "circulation" along C becomes 
flux through C. In the original form of Green's Theorem, change N and M to M and 
- N to obtain the flux form: 

Playing with letters has proved a new theorem! The two left sides in (1 1) are equal, 
so the right sides are equal-which is Green's Theorem (10) for the flux. The compo- 
nents M and N can be chosen freely and named freely. 

The change takes Mi + Nj into its perpendicular field - Ni + Mj. The field is turned 
at every point (we are not just turning the plane by 90"). The spin field S = - yi + xj 
changes to the position field R = xi + yj. The position field R changes to -S. Stream- 
lines of one field are equipotentials of the other field. The new form (10) of Green's 

circulation 

1 dy jdy idx Tdsy ky 
C 

j nds 

Fig. 15.12 The perpendicular component F n flows through C. Note n ds = d y  i - dx j. 
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Theorem is just as important as the old one-in fact I like it better. It is easier to
visualize flow across a curve than circulation along it.

The change of letters was just for the proof. From now on F = Mi + Nj.

EXAMPLE 5 Compute both sides of the new form (10) for F = 2xi + 3yj. The region
R is a rectangle with sides a and b.

Solution This field has dM/ax + ON/ly = 2 + 3. The integral over R is f, 5 dx dy =
5ab. The line integral has four parts, because R has four sides. Between the left and
right sides, M = 2x increases by 2a. Down the left and up the right, fM dy = 2ab
(those sides have length b). Similarly N = 3y changes by 3b between the bottom and
top. Those sides have length a, so they contribute 3ab to a total line integral of 5ab.

Important: The "divergence" of a flow field is aM/ax + aNlay. The example has
divergence = 5. To maintain this flow we must replace 5 units continually-not just
at the origin but everywhere. (A one-point source is in example 7.) The divergence is
the source strength, because it equals the outflow. To understand Green's Theorem
for any vector field Mi + Nj, look at a tiny rectangle (sides dx and dy):

Flow out the right side minus flow in the left side = (change in M) times dy

Flow out the top minus flow in the bottom = (change in N) times dx

Total flow out of rectangle: dM dy + dN dx = (aM/ax + aN/ay)dx dy.

The divergence times the area dx dy equals the total flow out. Section 15.5 gives more
detail with more care in three dimensions. The divergence is Mx + N, + PZ.

flux 3ab F = 2xi

t A• t/t/ +3yj

flux
M 2ab

Fig. 15.13 Mx + N, = 2 + 3 = 5 yields flux = 5(area) = 5ab. The flux is dM dy + dN dx=
(Mx + NY) dx dy. The spin field has no flux.

EXAMPLE 6 Find the flux through a closed curve C of the spin field S = - yi + xj.

Solution The field has M = - y and N = x and Mx + N, = 0. The double integral is
zero. Therefore the total flow (out minus in) is also zero-through any closed curve.
Figure 15.13 shows flow entering and leaving a square. No fluid is added or removed.
There is no rain and no evaporation. When the divergence Mx + N, is zero, there is
no source or sink.

FLOW FIELDS WITHOUT SOURCES

This is really quite important. Remember that conservative fields do no work around
C, they have a potential f, and they have "zero curl." Now turn those statements
through 90', to find their twins. Source-free fields have no flux through C, they have
stream functions g, and they have "zero divergence." The new statements E-F-G-H
describe fields without sources.

b

0 __0II
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156 The field F = M(x, y)i + N(x, y)j is source-free if it has these properties: 

E The total flux f F n ds through every closed curve is zero. 

F Across all curves from P to Q, the ff ux r: F n ds is the same. 

G There is a stream function g(x, y), for which M = ag/dy and N = - agf ax. 

H The components satisfy aM/ax + aN/ay = 0 (the divergence is zero). 

A field with one of these properties has them all. H is the quick test. 

The spin field -yi + xj passed this test (Example 6 was source-free). The field 
2xi + 3yj does not pass (Example 5 had M, + N, = 5). Example 7 almost passes. 

EXAMPLE 7 The radial field R/r2 = (xi + yj)/(x2 + y2) has a point source at (0,O). 

The new test H is divergence = dM/dx + dN/dy = 0. Those two derivatives are 

- - -  x2 + y2 - x(2x) 
and - - - x2+y2-y(2y). (12) 

ax 7 X~ + y2 ) - (x2 + y2). ay a ( x2 + y2 ) - (x2 +y2)2 

They add to zero. There seems to be no source (if the calculation is correct). The flow 
through a circle x2 + y2 = a' should be zero. But it's not: 

A source is hidden somewhere. Looking at R/r2, the problem is at (0,O). The field is 
not defined when r = 0 (it blows up). The derivatives in (12) are not continuous. Test 
H does not apply, and was not passed. The divergence M, + N, must be a "delta 
function" of strength 211. There is' a point source sending flow out through all circles. 

I hope you see the analogy with Example 4,. The field S/r2 is curl-free except at r = 0. 
The field R/r2 is divergence-free except at r = 0. The mathematics is parallel and the 
fields are perpendicular. A potential f and a stream function g require a region without 
holes. 

THE BEST FIELDS: CONSERVATIVE AND SOURCE-FREE 

What if F is conservative and also source-free? Those are outstandingly important 
fields. The curl is zero and the divergence is zero. Because the field is conservative, it 
comes from a potential. Because it is source-free, there is a stream function: 

Those are the Cauchy-Riemann equations, named after a great mathematician of his 
time and one of the greatest of all time. I can't end without an example. 

EXAMPLE 8 Show that yi + xj is both conservative and source-free. Find f and g. 

Solution With M = y and N = x, check first that i?M/dy = 1 = dN/Zx. There must 
be a potential function. It is f = xy, which achieves af/ax = y and i?f/ay = x. Note 
that fxx +A, = 0. 

Check next that dM/dx + aN/dy = 0 + 0. There must be a stream function. It is 
g = f (y2 - x2), which achieves dg/ay = y aild dg/i?x = - x. Note that g,, + g,, = 0. 
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The curves f = constant are the equipotentials. The curves g = constant are the 
streamlines (Figure 15.4). These are the twin properties-a conservative field with 
a potential and a source-free field with a stream function. They come together into 
the fundamental partial differential equation of equilibrium-Laplace's equation 
fxx  +&y = 0. 

ISH There is a potential and stream function when My = Nx and Mx = - Ny. 
They satisfy LaplhceJs e 4 ~ i m :  

f,+f,=M,+Ny=O and g,+gyy=-Nx+My=O. (15) 

If we have f without g, as in f = x2 + y2 and M = 2x and N = 2y, we don't have 
Laplace's equation: f, + fyy =4. This is a gradient field that needs a source. 
If we have g without f; as in g = x2 + y2 and M = 2y and N = - 2x, we don't have 
Laplace's equation. The field is source-free but it has spin. The first field is 2R and 
the second field is 2s. 

With no source and no spin, we are with Laplace at the center of mathematics and 
science. 

Green's Theorem: Tangential form f F T ds and normal form f F n ds 

fcMdx+Ndy=J'Ji*.-M,)dxdy f c ~ d y - N ~ = f / R ( M x + N y ) d x d y  

work curl flux divergence 

Conservative: work = zero, Nx = My, gradient of a potential: M = fx and N =f, 
Sourcefree: h x  = zero, Mx = - Ny , has a stream function: M = gy and N = - gx 
Conservative + source-free: Cauchy-Rimann + Laplace equations for f and g. 

15.3 EXERCISES 
Read-through questions 

The work integral 8 M dx + N dy equals the double integral 
a by b 'sTheorem. ForF = 3i +4j the workis c . 

For F = d and e ,the work equals the area of R. When 
M = af/ax and N = aflay, the double integral is zero because 

f . The line integral is zero because g . An example is 
F = h . The direction on Cis i around the outside and 

I around the boundary of a hole. If R is broken into very 
simple pieces with crosscuts between them, the integrals of 

k cancel along the crosscuts. 

Test D for gradient fields is I . A field that passes this 
test has 8 F dR = m . There is a solution to f, = n and 
f, = o . Then df = M dx + N dy is an P differential. 
The spin field S/r2 passes test D except at s . Its potential 
f = r increases by s going around the origin. The 
integral jj (N, - M,)dx dy is not zero but t . 

The flow form of Green's Theorem is u = v . The 
normal vector in F n ds points w and In1 = x and n ds 

equals dy i - dx j. The divergence of Mi + Nj is Y . For F = 
xi the double integral is 2 . There @)(is not) a source. For 
F = yi the divergence is A . The divergence of ~ / r ~  is zero 
except at B . This field has a c source. 

A field with no source has properties E = D , F = E , 
G = F , H =zero divergence. The stream function g 
satisfies the equations G . Then aM/ax + 
aNpy = 0 because a2g/axay = H . The example F = yi has 
g = I . There (is)(is not) a potential function. The example 
F = xi - yj has g = J and also f = K . This f satisfies 
Laplace's equation 1 , because the field F is both M 
and N . The functions f and g are connected by the 0 

equations afpx = ag/ay and P . 

Compute the line integrals 1-6 and (separately) the double integ- 
rals in Green's Theorem (1). The circle has x = a cos t, 
y = a sin t. The triangle has sides x = 0, y = 0, x + y = 1. 

1 8 x dy along the circle 2 8 x2y dy along the circle 
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3 8 x dx along the triangle 4 $ y dx along the triangle 

5 $ x2y dx along the circle 6 8 x2y dx along the triangle 

7 Compute both sides of Green's Theorem in the form (10): 
(a) F = xi + yj, R = upper half of the disk x2 + y2 Q 1. 
(b) F = x2i + xyj, C = square with sides y = 0, x = 1, y = 1, 
x = 0. 

8 Show that $,(x2y + 2x)dy + xy2dx depends only on the 
area of R. Does it equal the area? 

9 Find the area inside the hypocycloid x = cos3t, y = sin3t 
from +$ x dy - y dx. 

10 For constants b and c, how is $by dx + cx dy related to 
the area inside C? If b = 7, which c makes the integral zero? 

11 For F = grad ,/-, show in three ways that $F dR = 

0 around x = cos t, y = sin t. 
(a) F is a gradient field so 
(b) Compute F and directly integrate F dR. 
(c) Compute the double integral in Green's Theorem. 

12 Devise a way to find the one-dimensional theorem 
1: (df/dx)dx = f (b) - f (a) as a special case of Green's Theorem 
when R is a square. 

13 (a) Choose x(t) and y(t) so that the path goes from (1,O) 
to (1,O) after circling the origin twice. 
(b) Compute $ y dx and compare with the area inside your 
path. 
(c) Compute $ (y dx - x dy)/(x2 + y2) and compare with 271 
in Example 7. 

14 In Example 4 of the previous section, the work I S  d R 
between (1,O) and (0, 1) was 1 for the straight path and 7112 
for the quarter-circle path. Show that the work is always twice 
the area between the path and the axes. 

Compute both sides of 4 F n ds = (M, + N,) dx dy in 15-20. 

15 F = yi + xj in the unit circle 

16 F = xyi in the unit square 0 6 x, y 6 1 

17 F = Rlr in the unit circle 

18 F = S/r in the unit square 

19 F = xZyj in the unit triangle (sides x = 0, y = 0, x + y = 1) 

20 F = grad r in the top half of the unit circle. 

21 Suppose div F = 0 except at the origin. Then the flux 
$ F  nds is the same through any two circles around the 
origin, because . (What is jj (M, + N,)dx dy between 
the circles?) 

22 Example 7 has div F = 0 except at the origin. The flux 
through every circle x2 + y2 = a2 is 271. The flux through a 
square around the origin is also 2n because . (Com- 
pare Problem 2 1 .) 

23 Evaluate 8 a(x, y)dx + b(x, y)dy by both forms of Green's 
Theorem. The choice M = a, N = b in the work form gives 
the double integral . The choice M = b, N = - a in 
the flux form gives the double integral . There was 
only one Green. 

24 Evaluate 8 cos3y dy - sin3x dx by Green's Theorem. 

25 The field R/r2 in Example 7 has zero divergence except at 
r = 0. Solve ag/ay = x/(x2 + y2) to find an attempted stream 
function g. Does g have trouble at the origin? 

26 Show that S/r2 has zero divergence (except at r = 0). Find 
a stream function by solving ag/ay = y/(x2 + y2). Does g have 
trouble at the origin? 

27 Which differentials are exact: y dx - x dy, x2dx + y2dy, 
y2dx + x2dy? 

28 If Mx + N, = 0 then the equations dg/ay = and 
ag/ax = yield a stream function. If also Nx = My, 
show that g satisfies Laplace's equation. 

Compute the divergence of each field in 29-36 and solve g, = 
M and gx = - N for a stream function (if possible). 

33 ex cos y i - ex sin y j 34 eX+y(i - j) 

35 2yi/x + y2j/x2 36 xyi - xyj 

37 Compute Nx- My for each field in 29-36 and find a 
potential function f when possible. 

38 The potential f(Q) is the work 1: F Tds to reach Q from 
a fixed point P (Section 15.2). In the same way, the stream 
function g(Q) can be constructed from the integral . 
Then g(Q) - g(P) represents the flux across the path from P to 
Q. Why do all paths give the same answer? 

39 The real part of (x + i ~ ) ~  = x3 + 3ix2y - 3xy2 - iy3 is f = 
x3 - 3xy2. Its gradient field is F =grad f = . The 
divergence of F is . Therefore f satisfies Laplace's 
equation fx, + fyy = 0 (check that it does). 

40 Since div F = 0 in Problem 39, we can solve ag/ay = 

and ag/Jx = . The stream function is g = 

. It is the imaginary part of the same (x + i ~ ) ~ .  Check 
that f and g satisfy the Cauchy-Riemann equations. 

41 The real part f and imaginary part g of (x + iy)" satisfy the 
Laplace and Cauchy-Riemann equations for n = 1,2, .... 
(They give all the polynomial solutions.) Compute f and g for 
n=4. 

42 When is M dy - N dx an exact differential dg? 

43 The potential f = ex cos y satisfies Laplace's equation. 
There must be a g. Find the field F = grad f and the stream 
function g(x, y). 
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44 Show that the spin field S does work around every simple inside R can be squeezed to a point without leaving R. Test 
closed curve. these regions: 

1. xy  plane without (0,O) 2. xyz space without (0, 0,O) 
45 For F =f(x) j  and R = unit square 0 < x  6 1, 0 < y <  1, 3. sphere x2 + y2 + z2 = 1 4.  a torus (or doughnut) 
integrate both sides of Green's Theorem (1). What formula is 
required from one-variable calculus? 5. a sweater 6. a human body 

7. the region between two spheres 
46 A region R is "simply connected" when every closed curve 8. xyz space with circle removed. 

-[ 15.4 Surface Integrals 

The double integral in Green's Theorem is over a flat surface R. Now the region 
moves out of the plane. It becomes a curved surface S, part of a sphere or cylinder 
or cone. When the surface has only one z for each (x, y), it is the graph of a function 
z(x, y). In other cases S can twist and close up-a sphere has an upper z and a lower 
z. In all cases we want to compute area and flux. This is a necessary step (it is our 
last step) before moving Green's Theorem to three dimensions. 

First a quick review. The basic integrals are 1 dx and 11 dx dy and 111 dx dy dz. The 
one that didn't fit was Jds-the length of a curve. When we go from curves to 
surfaces, ds becomes dS. Area is JI dS m d  flux is IJ F n dS, with double integrals 
because the surfaces are two-dimensional. The main difficulty is in dS. 

All formulas are summarized in a table at the end of the section. 

There are two ways to deal with ds (along curves). The same methods apply to dS 
(on surfaces). The first is in xyz coordinates; the second uses parameters. Before this 
subject gets complicated, I will explain those two methods. 

Method 1 is for the graph of a function: curve y(x) or surface z(x, y). 

A small piece of the curve is almost straight. It goes across by dx and up by dy: 

length ds = J- = ,/i+(dyldx)2 dx. (1) 

A small piece of the surface is practically flat. Think of a tiny sloping rectangle. One 
side goes across by dx and up by (dz/dx)dx. The neighboring side goes along by dy 
and up by (az/dy)dy. Computing the area is a linear problem (from Chapter 1 I), 
because the flat piece is in a plane. 

Two vectors A and B form a parallelogram. The length of their cross product is the 
area. In the present case, the vectors are A = i + (az/ax)k and B = j + (az/ay)k. Then 
Adx and Bdy are the sides of the small piece, and we compute A x B: 

This is exactly the normal vector N to the tangent plane and the surface, from 
Chapter 13. Please note: The small flat piece is actually a parallelogram (not always 
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a rectangle). Its area dS is much like ds, but the length of N = A x B involves two
derivatives:

area dS = IAdx x Bdyl = INIdx dy = 1 + (az/ax)2 + (z/aOy) 2 dx dy. (3)

EXAMPLE 1 Find the area on the plane z = x + 2y above a base area A.

This is the example to visualize. The area down in the xy plane is A. The area up on
the sloping plane is greater than A. A roof has more area than the room underneath
it. If the roof goes up at a 450 angle, the ratio is 2/. Formula (3) yields the correct
ratio for any surface--including our plane z = x + 2y.

X = U Cos
y = u sin v

u

X = Cos V
y = sin v
Z=U

Y

Fig. 15.14 Roof area = base area times |NI. Cone and cylinder with parameters u and v.

The derivatives are dz/dx = 1 and az/ay = 2. They are constant (planes are easy).
The square root in (3) contains 1 + 12 + 22 = 6. Therefore dS = 6 dx dy. An area in
the xy plane is multiplied by 6 up in the surface (Figure 15.14a). The vectors A and
B are no longer needed-their work was done when we reached formula (3)-but
here they are:

A=i+(az/ax)k=i+k B=j+(az/ay)k=j+2k N= -i-2j+k.

The length of N = A x B is 6. The angle between k and N has cos 0 = 1/ 6. That
is the angle between base plane and sloping plane. Therefore the sloping area is 6
times the base area. For curved surfaces the idea is the same, except that the square
root in INI = 1/cos 0 changes as we move around the surface.

Method 2 is for curves x(t), y(t) and surfaces x(u, v), y(u, v), z(u, v) with parameters.

A curve has one parameter t. A surface has two parameters u and v (it is two-
dimensional). One advantage of parameters is that x, y, z get equal treatment, instead
of picking out z as f(x, y). Here are the first two examples:

cone x = u cos v, y = u sin v, z = u cylinder x = cos v, y = sin v, z = u. (4)

Each choice of u and v gives a point on the surface. By making all choices, we get
the complete surface. Notice that a parameter can equal a coordinate, as in z = u.
Sometimes both parameters are coordinates, as in x = u and y = v and z =f(u, v).
That is just z =f(x, y) in disguise-the surface without parameters. In other cases we
find the xyz equation by eliminating u and v:

cone (u cos v)2 +(uin )2 = 2 or X2y 2 =z Or z==x 2 y 2

cylinder (cos v)2 + (sin v)2 = 1 or x2 +y 2 = 1.

I I
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The cone is the graph off = ,/-. The cylinder is not the graph of any function. 
There is; a line of z's through each point on the circle x2 + y2 = 1. That is what z = 
u tells us: Give u all values, and you get the whole line. Give u and v all values, and 
you get the whole cylinder. Parameters allow a surface to close up and even go 
through itself-which the graph of f(x, y) can never do. 

Actually z = Jw gives only the top half of the cone. (A function produces 
only one z.) The parametric form gives the bottom half also. Similarly y = ,/- 
gives only the top of a circle, while x = cos t, y = sin t goes all the way around. 

Now we find dS, using parameters. Small movements give a piece of the surface, 
practica.11~ flat. One side comes from the change du, the neighboring side comes from 
dv. The two sides are given by small vectors Adu and Bdv: 

ax ay a~ ax ay a2 
A=- i+ - j+ -k  and B=- i+- j+-k .  au au a~ a v  a v  a u  

To find the area dS of the parallelogram, start with the cross product N = A x B: 

Admittedly this looks complicated-actual examples are often fairly simple. The area 
dS of the small piece of surface is IN1 du dv. The length IN1 is a square root: 

iy iz i'z iyJ ( z  ax ix izJ (ax iy iy ix 
----- + ----- + ----- udv. (7) au av au a~ iiu iv iu av au av au av 

ay a2 a2 a ~ ) ~  + (az ax ax a;) (ax ay ay ax) = (-- - -- ----- j +  ----- k 
au a v  au av au a v  au av au a v  au av (6) N =  

EXAMPLE 2 Find A and B and N = A x B and dS for the cone and cylinder. 

i j k 

x ~ ,  yU z,, 

The cone has x = u cos v, y = u sin v, z = u. The u derivatives produce A = dR/du = 

cos v i -I- sin v j + k. The v derivatives produce the other tangent vector B = aR/dv = 

- u s i n v i + u c o s v j .  The normal vector is A x B =  - u c o s v i - u s i n v j + u k .  Its 
length gives dS: 

~ S = I A  x BI dudv=J(u cos v12+(u sin v)* +u2dudv=&ududv.  

The cylinder is even simpler: dS = du dv. In these and many other examples, A is 
perpendicular to B. The small piece is a rectangle. Its sides have length IAl du and 
IB(dv. (The cone has ]A/ = u and IBI = &, the cylinder has IAl= IBI = 1). The cross 
product is hardly needed for area, when we can just multiply IAl du times IBldv. 

Remark on the two methods Method 1 also used parameters, but a very special 
choice--u is x and v is y. The parametric equations are x = x, y = y, z = f(x, y). If 
you go through the long square root in (7), changing u to x and v to y, it simplifies 
to the s'quare root in (3). (The terms dy/dx and axlay are zero; axldx and dyldy are 
1.) Still it pays to remember the shorter formula from Method 1. 

Don't forget that after computing dS, you have to integrate it. Many times the 
good is with polar coordinates. Surfaces are often symmetric around an axis or 
a point. Those are the surfaces of revolution-which we saw in Chapter 8 and will 
come back to. 

Strictly speaking, the integral starts with AS (not dS). A flat piece has area 
[A x BlAxAy or [A x BlAuAv. The area of a curved surface is properly defined as a 
limit. The key step of calculus, from sums of AS to the integral of dS, is safe for 
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smooth surfaces. In examples, the hard part is computing the double integral and
substituting the limits on x, y or u, v.

EXAMPLE 3 Find the surface area of the cone z = x2 + y2 up to the height z = a.

We use Method 1 (no parameters). The derivatives of z are computed, squared, and
added:

z x z 2 y2
Sy INI2 = 1 + 2+ - 2.

Ox - y 2  y x 2 y 2  x2 +y2 
2 y2

Conclusion: INI = /2 and dS = /2 dx dy. The cone is on a 450 slope, so the area
dx dy in the base is multiplied by 2 in the surface above it (Figure 15.15). The
square root in dS accounts for the extra area due to slope. A horizontal surface has
dS = 1 dx dy, as we have known all year.

Now for a key point. The integration is down in the base plane. The limits on x and
y are given by the "shadow" of the cone. To locate that shadow set z = x/x2 + y2

equal to z = a. The plane cuts the cone at the circle x2 + y 2 = a2 . We integrate over
the inside of that circle (where the shadow is):

surface area of cone = f 2 dx dy = /2 na 2

shadow

EXAMPLE 4 Find the same area using dS = /2 u du dv from Example 2.

With parameters, dS looks different and the shadow in the base looks different. The
circle x2 + y2 = a2 becomes u2 cos 2v + u2 sin2v = a2. In other words u = a. (The cone
has z = u, the plane has z = a, they meet when u = a.) The angle parameter v goes
from 0 to 27x. The effect of these parameters is to switch us "automatically" to polar
coordinates, where area is r dr dO:

surface area of cone = dS = fu du dv = 2a 2.
fo 0o

y2 dxdy

x--

/ ayx2 2x +y 2 = a2

x

1I ududv

=-x
-1 -x

Fig. 15.15 Cone cut by plane leaves shadow in the base. Integrate over the shadow.

EXAMPLE 5 Find the area of the same cone up to the sloping plane z = 1 - x.

Solution The cone still has dS = 2 dx dy, but the limits of integration are changed.
The plane cuts the cone in an ellipse. Its shadow down in the xy plane is another
ellipse (Figure 15.15c). To find the edge of the shadow, set z = x2 + y2 equal to z =
1 - x. We square both sides:

2 y2 = + 2 or !(x + )2 + y2= 4
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This is the ellipse in the base-where height makes no difference and z is gone. The 
area of an ellipse is nab, when the equation is in the form (xla)' + (y/b)2= 1. After 
multiplying by 314 we find a = 413 and b = $@. Then jJ$ dx dy = $nab is the 
surface area of the cone. 

The hard part was finding the shadow ellipse (I went quickly). Its area nab came 
from Example 15.3.2. The new part is & from the slope. 

EXAMPLE 6 Find the surface area of a sphere of radius a (known to be 4na2). 

This is a good example, because both methods almost work. The equation of the 
sphere is x2 + y2 + z2 = a2. Method 1 writes z =,,/-. The x and y deriva- 
tives are -x/z and -ylz: 

The square root gives dS = a dxdy/J-. Notice that z is gone (as it should 
be). Nolw integrate dS over the shadow of the sphere, which is a circle. Instead of 
dx dy, switch to polar coordinates and r dr d6: 

2naJ-1:- - = 2na2. 
shadow 

This calculation is successful but wrong. 2na2 is the area of the half-sphere above the 
xy plane. The lower half takes the negative square root of z2 = a2 -x2 -y2. This 
shows t'he danger of Method 1, when the surface is not the graph of a function. 

EXAMPLE 7 (same sphere by Method 2: use parameters) The natural choice is spheri- 
cal coordinates. Every point has an angle u = # down from the North Pole and an 
angle v = 6 around the equator. The xyz coordinates from Section 14.4 are x = 

a sin # cos 6, y = a sin # sin 6, z = a cos #. The radius p = a is fixed (not a parameter). 
Compute the first term in equation (6)' noting dz/d6 = 0: 

(dy/d#)(az/aO) - (az/a#)(ay/a6) = - (-a sin #)(a sin # cos 6) = a2 sin24 cos 6. 

The other terms in (6) are a2 sin2# sin 6 and a2 sin # cos #. Then dS in equation (7) 
squares these three components and adds. We factor out a4 and simplify: 

Conclusion: dS = a2 sin # d# dB. A spherical person will recognize this immediately. 
It is the volume element dV = p2 sin # dp d# dB, except dp is missing. The small box 
has area dS and thickness dp and volume dK Here we only want dS: 

= Sfrrarea of sphere = [[dS [: a2 sin i,l d 4  dB = 4aa2. (9) 

Figure 15.16a shows a small surface with sides a d# and a sin # d6. Their product is 
dS. Figure 15.16b goes back to Method 1, where equation (8) gave dS = (alz) dx dy. 

I doubt that you will like Figure 15.16~-and you don't need it. With parameters 
# and 8,the shadow of the sphere is a rectangle. The equator is the line down the 
middle, where # = 4 2 .  The height is z = a cos #. The area d# d6 in the base is the 
shadow of dS = a2 sin # d# dB up in the sphere. Maybe this figure shows what we 
don't halve to know about parameters. 
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Fig. 15.16 Surface area on a sphere: (a) spherical coordinates (b) xyz coordinates (c) 00 space.

EXAMPLE 8 Rotate y = x 2 around the x axis. Find the surface area using parameters.

The first parameter is x (from a to b). The second parameter is the rotation angle 0
(from 0 to 27r). The points on the surface in Figure 15.17 are x = x, y = x 2 cos 0,
z = x2 sin 0. Equation (7) leads after much calculation to dS = x 2 /1 4x2 dx dO.

Main point: dS agrees with Section 8.3, where the area was S 2nty 1 + (dy/dx)2 dx.
The 2rr comes from the 0 integral and y is x2. Parameters give this formula auto-
matically.

VECTOR FIELDS AND THE INTEGRAL OF F n

Formulas for surface area are dominated by square roots. There is a square root in
dS, as there was in ds. Areas are like arc lengths, one dimension up. The good point
about line integrals IJF -nds is that the square root disappears. It is in the denominator
of n, where ds cancels it: F * nds = M dy - N dx. The same good thing will now
happen for surface integrals Jf F . ndS.

This formula tells what to integrate, given the surface and the vector field (f and F).
The xy limits come from the shadow. Formula (10) takes the normal vector from
Method 1:

N = - Of/x i - Of/ayj + k and INI = V1 + (fax) + (f/x)2  )2.

For the unit normal vector n, divide N by its length: n = N/INI. The square root is in
the denominator, and the same square root is in dS. See equation (3):

F ndS = dx dy= -M - N +P dxdy. (11)

That is formula (10), with cancellation of square roots. The expression F . ndS is often
written as F . dS, again relying on boldface to make dS a vector. Then dS equals ndS,
with direction n and magnitude dS.

15I Through the surface z =f(x, y), the vector field F(x, y, z) = Mi + Nj + Pk
has

flux= Jf FndS= JJ -M -N +P + dxdy. (10)
sufaeshadow ex Oy

J J

I

0
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y = x b o s  6, L = x2 sin 6 

d s  = dxdy 
Y 

Fig. 15.1 7 Surface of revolution: parameters x, 8. Fig. 15.18 F - n dS gives flow through dS.  

EXAMPLE 9 Find ndS for the plane z = x + 2y. Then find F ndS for F = k. 

This plane produced & in Example 1 (for area). For flux the & disappears: 

For the flow field F = k, the dot product k ndS reduces to l d x  dy. The slope of the 
plane makes no difference! Theflow through the base alsoflows through the plane. The 
areas are different, but flux is like rain. Whether it hits a tent or the ground below, 
it is the same rain (Figure 15.18). In this case JJ F ndS = 51 d x  dy = shadow area in 
the base. 

EXAMPLE 10 Find the flux of F = xi + yj + zk through the cone z = , /x2 + y2. 

X 
Solution F ndS = 

The zero comes as a surprise, but it shouldn't. The cone goes straight out from the 
origin, and so does F. The vector n that is perpendicular to the cone is also perpendic- 
ular to F. There is no flow through the cone, because F n = 0. The flow travels out 
along rays. 

jj F ndS F O R  A SURFACE WITH PARAMETERS 

In Example 10 the cone was z = f(x, y) = Jx2 + y2. We found dS by Method 1. 
Parameters were not needed (more exactly, they were x and y). For surfaces that fold 
and twist, the formulas with u and v look complicated but the actual calculations can 
be simpler. This was certainly the case for dS = dudv on the cylinder. 

A small piece of surface has area dS = IA x BI du dv. The vectors along the sides are 
A = xui + yuj + z,k and B = xvi + y,j + zvk. They are tangent to the surface. Now we 
put their cross product N = A x B to another use, because F ndS involves not only 
area but direction. We need the unit vector n to see how much flow goes through. 

The direction vector is n = N/INI. Equation (7) is dS = lNldu dv, so the square root 
IN1 cancels in ndS. This leaves a nice formula for the "normal component" of flow: 

1 155 Through a surface with parameters u and v, the field F = Mi + Nj + P k  I 
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EXAMPLE I I Find the flux of F = xi + yj + zk through the cylinder x2 + y2 = 1, 
O < z < b .  

Solution The surface of the cylinder is x = cos u, y = sin u, z = v. The tangent vectors 
from (5) are A = (- sin u) i + (cos u) j and B = k. The normal vector in Figure 15.19 
goes straight out through the cylinder: 

To find F N, switch F = xi + yj + zk to the parameters u and v. Then F N = 1: 

For the flux, integrate F N = 1 and apply the limits on u = 8 and v = z: 

flux = f b  fin 1 du dv = 2nb = surface area of the cylinder. 
0 0 

Note that the top and bottom were not included! We can find those fluxes too. The 
outward direction is n = k at the top and n = - k down through the bottom. Then 
F n is + z = b at the top and -z = 0 at the bottom. The bottom flux is zero, the top 
flux is b times the area (or nb). The total flux is 2nb + nb = 3nb. Hold that answer 
for the next section. 

Apology: I made u the angle and v the height. Then N goes outward not inward. 

EXAMPLE 12 Find the flux of F = k out the top half of the sphere x2 + y2 + z2 = a2. 

Solution Use spherical coordinates. Example 7 had u = 4 and v = 8. We found 

N = A x B = a2 sin2# cos 8 i + a' sin24 sin 8 j + a2 sin # cos # k. 

The dot product with F = k is F * N = a2 sin # cos #. The integral goes from the pole 
to the equator, # = 0 to # = 4 2 ,  and around from 8 = 0 to 0 = 2n: 

flux = 
sin2# "I2 

a2 sin # cos 4 d4  dB = 2na2 --- I = nu2 
2 0 

The next section will show that the flux remains at nu2 through any surfLlce (!) that 
is bounded by the equator. A special case is a flat surface-the disk of radius a at 
the equator. Figure 15.18 shows n = k pointing directly up, so F - n  = k k = 1. The 
flux is jj 1 dS = area of disk = nu2. ANfluid goes past the equator and out through the 
sphere. 

Fig. 15.19 Flow through cylinder. Fig. 15.20 Mobius strip (no way to choose n). 
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I have to mention one more problem. It might not occur to a reasonable person, but
sometimes a surface has only one side. The famous example is the Miibius strip, for
which you take a strip of paper, twist it once, and tape the ends together. Its special
property appears when you run a pen along the "inside." The pen in Figure 15.20
suddenly goes "outside." After another round trip it goes back "inside." Those words
are in quotation marks, because on a Mdbius strip they have no meaning.

Suppose the pen represents the normal vector. On a sphere n points outward.
Alternatively n could point inward; we are free to choose. But the M6bius strip makes
the choice impossible. After moving the pen continuously, it comes back in the
opposite direction. This surface is not orientable. We cannot integrate F * n to compute
the flux, because we cannot decide the direction of n.

A surface is oriented when we can and do choose n. This uses the final property of
cross products, that they have length and direction and also a right-hand rule. We
can tell A x B from B x A. Those give the two orientations of n. For an open surface
(like a wastebasket) you can select either one. For a closed surface (like a sphere) it
is conventional for n to be outward. By making that decision once and for all, the
sign of the flux is established: outward flux is positive.

FORMULAS
FOR
SURFACE
INTEGRALS

15.4 EXERCISES
Read-through questions

A small piece of the surface z =f(x, y) is nearly a .When
we go across by dx, we go up by b . That movement is
Adx, where the vector A is i + c . The other side of the
piece is Bdy, where B = j+ d . The cross product A x B
is N = e . The area of the piece is dS = INIdxdy. For the
surface z = xy, the vectors are A = f and B = g and
N = h . The area integral is fS dS = I dx dy.

With parameters u and v, a typical point on a 450 cone is
x = u cos v, y = I , z= k . A change in u moves that
point by Adu = (cos v i + I )du. A change in v moves the
point by Bdv= m . The normal vector is N=AxB=

n .The area is dS= o du dv. In this example A ' B =
p so the small piece is a q and dS = IAl IBdu dv.

For flux we need ndS. The r vector n is N=A x B
divided by s . For a surface z =f(x, y), the product ndS
is the vector t (to memorize from table). The particular

surface z = xy has ndS= u dx dy. For F = xi + yj + zk the
flux through z = xy is F * ndS = v dx dy.

On a 30' cone the points are x = 2u cos v, y = 2u sin v, z =
u. The tangent vectors are A= w and B= x . This
cone has ndS=A x Bdudv= y . For F=xi+yj+zk,
the flux element through the cone is F ndS = z . The
reason for this answer is A .The reason we don't compute
flux through a M6bius strip is B

In 1-14 find N and dS = INI dx dy and the surface area ff dS.
Integrate over the xy shadow which ends where the z's are equal
(x2 + y2 = 4 in Problem 1).

1 Paraboloid z = x2 + y2 below the plane z = 4.

2 Paraboloid z = x 2 + y 2 between z = 4 and z = 8.

3 Plane z = x - y inside the cylinder x2 + y2 = 1.

4 Plane z = 3x + 4y above the square 0 < x < 1, 0 < y < 1.
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Spherical cap x2 + y2 + z2 = 1 above z = 1/& 

Spherical band x2 + y2 + z2 = 1 between z = 0 and 1/& 

Plane z = 7y above a triangle of area A. 

Cone z2 = x2 + y2 between planes z = a and z = b. 

The monkey saddle z = 3x3 - xy2 inside x2 + y2 = 1. 

z = x + y above triangle with vertices (0, O), (2,2), (0,2). 

Plane z = 1 - 2x - 2y inside x 2 0, y 2 0, z 2 0. 

Cylinder x2 + z2 = a2 inside x2 + y2 = a2. Only set up 

SS 'is- 
13 Right circular cone of radius a and height h. Choose 
z = f (x, y) or parameters u and v. 

14 Gutter z = x2 below z = 9 and between y = f 2. 

In 15-18 compute the surface integrals g(x, y, z)dS. 

15 g = xy over the triangle x + y + z = 1, x, y, z 2 0. 

16 g = x2 + y2 over the top half of x2 + y2 + z2 = 1 (use +,8). 

17 g = xyz on x2 + y2 + z2 = 1 above z2 = x2 + y2 (use +,8). 

18 g = x on the cylinder x2 + y2 = 4 between z = 0 and z = 3. 

In 19-22 calculate A, B, N, and dS. 

19 x = u ,  y = v + u , z = v + 2 u + l .  

20 x=uv, y = u + u ,  z=u-v. 

21 x = (3 + cos u) cos v, y = (3 + cos u) sin v, z = sin u. 

22 x = u cos v, y = u sin v, z = v (not z = u). 

23-26 In Problems 1-4 respectively find the flux F ndS 
for F = xi + yj + zk. 

27-28 In Problems 19-20 respectively compute F ndS for 
F = yi - xj through the region u2 + v2 < 1. 

29 A unit circle is rotated around the z axis to give a torus 
(see figure). The center of the circle stays a distance 3 from 
the z axis. Show that Problem 21 gives a typical point (x, y, z) 
on the torus and find the surface area dS = IN1 du dv. 

30 The surface x = r cos 8, y = r sin 8, z = a2 - r2 is bounded 
by the equator (r = a). Find N and the flux 11 k ndS, and 
compare with Example 12. 

31 Make a "double Mobius strip" from a strip of paper by 
twisting it twice and taping the ends. Does a normal vector 
(use a pen) have the same direction after a round trip? 

32 Make a "triple Mobius strip" with three twists. Is it 
orientable-does the normal vector come back in the same 
or opposite direction? 

33 If a very wavy surface stays close to a smooth surface, are 
their areas close? 

34 Give the equation of a plane with roof area dS = 3 times 
base area dx dy. 

35 The points (x, f(x) cos 8, f(x) sin 8) are on the surface of 
revolution: y = f(x) revolved around the x axis, parameters 
u = x and v = 8. Find N and compare dS = IN1 dx d8 with 
Example 8 and Section 8.3. 

15.5 The Divergence Theorem 

This section returns to the fundamental law wow out) - wow in) = (source). In two 
dimensions, the flow was in and out through a closed curve C. The plane region 
inside was R. In three dimensions, the flow enters and leaves through a closed surface 
S. The solid region inside is V. Green's Theorem in its normal form (for the flux of a 
smooth vector field) now becomes the great three-dimensional balance equation- 
the Divergence Theorem: 
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I 15K The flux qfF = Mi + Nj +Pk through abe boundary surface S equds the 
integral of the divergemx of F insick Y.  'TL~ Mrlgcaee Threni  h I 

In Green's Theorem the divergence was dM/dx + dN/dy. The new term dP/dz 
accounts for upward flow. Notice that a constant upward component P adds nothing 
to the divergence (its derivative is zero). It also adds nothing to the flux (flow up 
through the top equals flow up through the bottom). When the whole field F is 
constant, the theorem becomes 0 = 0. 

There are other vector fields with div F = 0. They are of the greatest importance. 
The Divergence Theorem for those fields is again 0 = 0, and there is conservation of 
fluid. When div F = 0, flow in equals flow out. We begin with examples of these 
"divergence-free" fields. 

EXAMPLE 1 The spin fields - yi + xj + Ok and Oi - zj + yk have zero divergence. 

The first is an old friend, spinning around the z axis. The second is new, spinning 
around the x axis. Three-dimensional flow has a great variety of spin fields. The 
separate terms dM/dx, dN/dy, dP/az are all zero, so div F = 0. The flow goes around 
in circles, and whatever goes out through S comes back in. (We might have put a 
circle on 11, as we did on $c, to emphasize that S is closed.) 

EXAMPLE 2 The position field R = xi + yj + zk has div R = 1 + 1 + 1 = 3. 

This is radial flow, straight out from the origin. Mass has to be added at every point 
to keep the flow going. On the right side of the divergence theorem is [[[ 3 dl/. 
Therefore the flux is three times the volume. 

Example 11 in Section 15.4 found the flux of R through a cylinder. The answer 
was 3nb. Now we also get 3nb from the Divergence Theorem, since the volume is nb. 
This is one of many cases in which the triple integral is easier than the double integral. 

EXAMPLE 3 An electrostatic field R/p3 or gravity field - R/p3 almost has div F = 0. 

The vector R = xi + yj + zk has length = p. Then F has length p/p3 
(inverse square law). Gravity from a point mass pulls inward (minus sign). The electric 
field from a point charge repels outward. The three steps almost show that div F = 0: 

Step 1. ap/ax = x/p, dplay = y/p, apldz = z/p-but do not add those three. F is not 
p or l/p2 (these are scalars). The vector field is We need dM/ax, aN/ay, aP/dz. 

Step 2. a ~ / a x  = d/dx(x/p3) is equal to l/p3 - ( 3 ~  dp/ax)/p4 = 1lp3 - 3x2/p5. For 
dN/dy and dP/az, replace 3x2 by 3y2 and 3z2. Now add those three. 

Step 3. div F = 3lp3 - 3(x2 + y2 + z2)/p5 = 3lp3 - 3lp3 = 0. 

The calculation div F = 0 leaves a puzzle. One side of the Divergence Theorem seems 
to give jjjO dV= 0. Then the other side should be jJ F * ndS = 0. But the flux is not 
zero when all flow is outward: 

The unit normal vector to the sphere p = constant is n = Rip. 
The outward flow F n = ( ~ 1 ~ ~ )  (Rip) = p2/p4 is always positive. 
Then jj F ndS = jj ds/p2 = 4np2/p2 = 4n. We have reached 4n = 0. 



584 15 Vector Calculus

This paradox in three dimensions is the same as for R/r2 in two dimensions.
Section 15.3 reached 27r = 0, and the explanation was a point source at the origin.
Same explanation here: M, N, P are infinite when p = 0. The divergence is a "delta
function" times 47r, from the point source. The Divergence Theorem does not apply
(unless we allow delta functions). That single point makes all the difference.

Every surface enclosing the origin has flux = 47r. Our calculation was for a sphere.
The surface integral is much harder when S is twisted (Figure 15.21 a). But the Diver-
gence Theorem takes care of everything, because div F = 0 in the volume V between
these surfaces. Therefore Jf F ndS = 0 for the two surfaces together. The flux
If F . ndS = - 4n into the sphere must be balanced by If F ndS = 4n7r out of the twisted
surface.

tf

(P2- P1) dS - (dP/dz) dV1

(Pe- Po) dS - (dPldz) dVo

(P2- Po) dS - SUM - INTEGRAL

Fig. 15.21 Point source: flux 47r through all enclosing surfaces. Net flux upward
= ffJ(8P/8z)dV.

Instead of a paradox 47r = 0, this example leads to Gauss's Law. A mass M at the
origin produces a gravity field F = - GMR/p3 . A charge q at the origin produces an
electric field E = (q/4rneo)R/p3 . The physical constants are G and go, the mathematical
constant is the relation between divergence and flux. Equation (1) yields equation (2),
in which the mass densities M(x, y, z) and charge densities q(x, y, z) need not be
concentrated at the origin:

45L Gauss's law in differential form: div F= - 4GM and div E = q/eo
Gauss's law in integral form: Flux is proportional to total mass or charge:

{{F ndS= - {J'j47rGMdV and JJE ndS = qdV/lo. (2)

THE REASONING BEHIND THE DIVERGENCE THEOREM

The general principle is clear: Flow out minus flow in equals source. Our goal is to
see why the divergence of F measures the source. In a small box around each point,
we show that div F dV balances F * ndS through the six sides.

So consider a small box. Its center is at (x, y, z). Its edges have length Ax, Ay, Az.
Out of the top and bottom, the normal vectors are k and -k. The dot product with
F = Mi + Nj + Pk is + P or -P. The area AS is AxAy. So the two fluxes are close
to P(x, y, z + ½Az)AxAy and - P(x, y, z - ½Az)AxAy. When the top is combined with
the bottom, the difference of those P's is AP:

net flux upward ,- APAxAy = (AP/Az)AxAyAz , (OP/Oz)A V.
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Similarly, the combined flux on two side faces is approximately (aN/ay)AK On the 
front and back it is (dM/ax)AK Adding the six faces, we reach the key point: 

flux out of the box x (aM/dx + aN/dy + dP/az)A K (4) 
This is (div F)AK For a constant field both sides are zero-the flow goes straight 
through. For F = xi + yj + zk, a little more goes out than comes in. The divergence 
is 3, so 3AV is created inside the box. By the balance equation the flux is also 3AK 

The approximation symbol x means that the leading term is correct (probably 
not the next term). The ratio APlAz is not exactly dP/az. The difference is of order 
Az, so the error in (3) is of higher order AVAz. Added over many boxes (about 1/AV 
boxes), this error disappears as Az + 0. 

The sum of (div F)A V over all the boxes approaches [Sj(div F)dK On the other 
side of the equation is a sum of fluxes. There is F *nAS out of the top of one box, 
plus F nAS out of the bottom of the box above. The first has n = k and the second 
has n = - k. They cancel each other-the flow goes from box to box. This happens 
every time two boxes meet. The only fluxes that survive (because nothing cancels 
them) are at the outer surface S. The final step, as Ax, Ay, Az + 0, is that those outside 
terms approach 11 F ndS. Then the local divergence theorem (4) becomes the global 
Divergence Theorem (1). 

Remark on the proof That "final step" is not easy, because the box surfaces don't 
line up with the outer surface S. A formal proof of the Divergence Theorem would 
imitate the proof of Green's Theorem. On a very simple region JjJ (aP/az)dx dy dz 
equals 11 P dx dy over the top minus 11 P dx dy over the bottom. After checking the 
orientation this is 11 Pk ndS. Similarly the volume integrals of dM/ax and dN/dy are 
the surface integrals 11 Mi ndS and 11 Nj ndS. Adding the three integrals gives the 
Divergence Theorem. Since Green's Theorem was already proved in this way, the 
reasoning behind (4) is more helpful than repeating a detailed proof. 

The discoverer of the Divergence Theorem was probably Gauss. His notebooks 
only contain the outline of a proof-but after all, this is Gauss. Green and Ostrograd- 
sky both published proofs in 1828, one in England and the other in St. Petersburg 
(now Leningrad). As the theorem was studied, the requirements came to light (smooth- 
ness of F and S, avoidance of one-sided Mobius strips). 

New applications are discovered all the time-when a scientist writes down a bal- 
ance equation in a small box. The source is known. The equation is div F = source. 
After Example 5 we explain F. 

EXAMPLE 4 If the temperature inside the sun is T = In lip, find the heat flow F = 
- grad T and the source div F and the flux 11 F . ndS. The sun is a ball of radius po. 

Solution F is -grad In l/p = +grad In p. Derivatives of In p bring division by p: 

F = (dpldx i + apjdy j + dp/dz k)/p = (xi + yj + zk)/p2. 

This flow is radially outward, of magnitude lip. The normal vector n is also radially 
outward, of magnitude 1. The dot product on the sun's surface is l/po: 

F = ndS = dS/po = (surface area)/po = 4npi/p0 = h p o .  JJ JJ 
Check that answer by the Divergence Theorem. Example 5 will find div F = l/p2. 
Integrate over the sun. In spherical coordinates we integrate dp, sin 4d4, and do: 

Ill div F dV = JO2' Jn  1'0 P2 sin 4 dp dm d9/p2 = (po)(2)(2n) as in (5). 
sun 0 0 
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This example illustrates the basic framework of equilibrium. The pattern appears 
everywhere in applied mathematics-electromagnetism, heat flow, elasticity, even 
relativity. There is usually a constant c that depends on the material (the example 
has c = 1). The names change, but we always take the divergence of the gradient: 

potential f 4 forcefild - c grad f: Then div(- c grad f )  = electric charge 

temperature T -+ flowfield - c grad T. Then div(- c grad T) = heat source 

displacement u 4 stressfield + c grad u. Then div(- c grad u) = outside force. 

You are studying calculus, not physics or thermodynamics or elasticity. But please 
notice the main point. The equation to solve is div(- c grad f )  = known source. The 
divergence and gradient are exactly what the applications need. Calculus teaches the 
right things. 

This framework is developed in many books, including my own text Introduction 
to Applied Mathematics (Wellesley-Cambridge Press). It governs equilibrium, in mat- 
rix equations and differential equations. 

PRODUCT RULE FOR VECTORS: INTEGRATION BY PARTS 

May I go back to basic facts about the divergence? First the definition: 

F(X, y, Z) = Mi + Nj + ~k has div F = v F = a ~ l a x  + a ~ l a y  + aplaz. 

The divergence is a scalar (not a vector). At each point div F is a number. In fluid 
flow, it is the rate at which mass leaves-the "flux per unit volume" or "flux density." 

The symbol V stands for a vector whose components are operations not numbers: 

v = "del" = i alax + j alay + k alaz. (6) 

This vector is illegal but very useful. First, apply it to an ordinary function f(x, y, z): 

Vf ="del f" = i aflax+j af/dy+ k df/az=gradient off.  (7) 

Second, take the dot product V F with a vector function F(x, y, z) = Mi + Nj + Pk: 

V F = "del dot F" = aM/dx + aN/dy + aP/az = divergence of F .  (8) 

Third, take the cross product V x F. This produces the vector curl F (next section): 

V x F = "del cross F" = . . . (to be defined). . . = curl of F .  (9) 

The gradient and divergence and curl are V and V and V x . The three great opera- 
tions of vector calculus use a single notation! You are free to write V or not-to 
make equations shorter or to help the memory. Notice that Laplace's equation 
shrinks to 

Equation (10) gives the potential when the source is zero (very common). F = grad f 
combines with div F = 0 into Laplace's equation div grad f = 0. This equation is so 
important that it shrinks further to V2 f = 0 and even to A f = 0. Of course A f = 
fxx + fyy + f,, has nothing to do with A f = f (x + Ax) - f (x). Above all, remember that 
f is a scalar and F is a vector: gradient of scalar is vector and divergence of vector is 
scalar. 



15.5 The Divergence Theorem 

Underlying this chapter is the idea of extending calculus to vectors. So far we have 
emphasized the Fundamental Theorem. The integral of df/dx is now the integral of 
div F. Instead of endpoints a and b, we have a curve C or surface S. But it is the rules 
for derivatives and integrals that make calculus work, and we need them now for 
vectors. Remember the derivative of u times v and the integral (by parts) of u dvldx: 

15M Scalar functions u(x, y, z)  and vector fields V (x, y, z) obey the product rule: 

div(uV) = u div V + V (grad zr). (1 1) 

The reverse of the product rule is integration by parts (Gauss's Formula): 

For a plane field this is Green's Fwmurla (and u = 1 gives Green's Theorem): 

Those look like heavy formulas. They are too much to memorize, unless you use 
them often. The important point is to connect vector calculus with "scalar calculus," 
which is not heavy. Every product rule yields two terms: 

Add those ordinary rules and you have the vector rule (1 1) for the divergence of uV. 
Integrating the two parts of div(uV) gives I[ uV ndS by the Divergence Theorem. 

Then one part moves to the other side, producing the minus signs in (12) and (13). 
Integration by parts leaves a boundary term, in three and two dimensions as it did in 
one dimension: uvtdx = - j utvdx + [uv]:. 

EXAMPLE 5 Find the divergence of F = R/p2, starting from grad p = R/p. 

Solution Take V = R and u = llp2 in the product rule (1 1). Then div F = (div R)/ 
P2 + R (grad l/p2). The divergence of R = xi + yj + zk is 3. For grad l/p2 apply the 
chain rule: 

R (grad llp2) = - 2R (grad p)/p3 = - 2R R/p4 = - 2/p2. 

The two parts of div F combine into 3/p2 - 2/p2 = l/p2-as claimed in Example 4. 

EXAMPLE 6 Find the balance equation for flow with velocity V and fluid density p. 

V is the rate of movement of fluid, while pV is the rate of movement of mass. 
Comparing the ocean to the atmosphere shows the difference. Air has a greater 
velocity than water, but a much lower density. So normally F = pV is larger for the 
ocean. (Don't confuse the density p with the radial distance p. The Greeks only used 
24 letters.) 

There is another difference between water and air. Water is virtually incompressible 
(meaning p = constant). Air is certainly compressible (its density varies). The balance 
equation is a fundamental law-the conservation of mass or the "continuity equation" 
for fluids. This is a mathematical statement about a physical flow without sources or 
sinks: 

Continuity Equation: div(pV) + 3plat = 0. (14) 
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Explanation: The mass in a region is j j j p  d V .  Its rate of decrease is - j j j  a p l a t  dV .  
The decrease comes from flow out through the surface (normal vector n).  The dot 
product F n = p V  * n  is the rate of mass flow through the surface. So the integral 
S j F  n d S  is the total rate that mass goes out. By the Divergence Theorem this is 
j j j  div F d V. 

To balance - j j j  d p / d t  d V in every region, div F must equal - a p l d t  at every point. 
The figure shows this continuity equation (14) for flow in the x direction. 

extra mass out mass loss 
- - 

mass in + Imsrr + d @ V )  d S  d t  - d p  d S  di p V  d S  d t  

Fig. 15.22 Conservation of mass during time dt: d(pV)/dx + dpldt = 0. 

15.5 EXERCISES 

Read-through questions 

In words, the basic balance law is a . The flux of F 
through a closed surface S is the double integral b . The 
divergence of Mi + Nj + Pk is c , and it measures d . 
The total source is the triple integral e . That equals the 
flux by the f Theorem. 

For F = 5zk the divergence is g . If V is a cube of side 
a then the triple integral equals h . The top surface where 
z = a has n = i and F n = i . The bottom and sides 
have F n = k . The integral jj F ndS equals I . 

The field F = R / ~ ~  has div F = 0 except m . jj F ndS 
equals n over any surface around the origin. This 
illustrates Gauss's Law 0 . The field F = xi + yj - 2zk has 
div F = P and 11 F ndS = q . For this F, the flux out 
through a pyramid and in through its base are r . 

The symbol V stands for s . In this notation div F is 
t . The gradient off is u . The divergence of grad f 

is v . The equation div grad f = 0 is w 's equation. 

The divergence of a product is div(uV) = x . Integration 
by parts is jjj u div V dx dydz = Y + z . In two 

.dimensions this becomes A . In one dimension it becomes 
B . For steady fluid flow the continuity equation is 

div pV = c . 

In 1-10 compute the flux jj F . ndS by the Divergence Theorem. 

1 F = xi + xj + xk, S: unit sphere x2 + y2 + z2 = 1. 

2 F =  -yi+xj, V: unit cube O<.u< 1, O<y<1 ,  O < z <  1. 

3 F = x2i + y2j + z2k, S: unit sphere 

4 F = x2i + 8y2j + z2k, V: unit cube. 

5 F = x i + 2 y j ,  S: sides x=O,  y = 0 ,  z=O, x + y + z =  1. 

6 F = u, = (xi + yj + A l p ,  S: sphere p = a. 

7 F = p(xi + yj + zk), S: sphere p = a 

8 F = x3i + y3j + z3k, S: sphere p = a. 

9 F = z2k, V: upper half of ball p < a. 

10 F = grad (xeY sin z ) ,  S: sphere p = a. 

11 Find jjj div(x2i + yj + 2k)dV in the cube 0 < x, y, z < a. 

Also compute n and jj F ndS for all six faces and add. 

12 When a is small in problem 11, the answer is close to ca3. 
Find the number c. At what point does div F = c? 

13 (a) Integrate the divergence of F = pi in the ball p < a. 

(b) Compute 11 F ndS over the spherical surface p = a. 

14 Integrate R ndS over the faces of the box 0 < x < 1, 
0 6 y < 2, 0 < z < 3 and check by the Divergence Theorem. 

15 Evaluate F . ndS when F = xi + z2j + y2k and: 

(a) S is the cone z2 = x2 + y2 bounded above by the plane 
z =  1. 

(b) S is the pyramid with corners (O,0, O), (1,0, O), (0, 1 .  O), 
(O,O,  1). 

16 Compute all integrals in the Divergence Theorem when 
F = x(i + j - k) and V is the unit cube 0 < x, y, z 6 1. 

17 Following Example 5 ,  compute the divergence of 
(.xi + yj + +k)/p7. 

18 (grad f )  n is the derivative off in the direction 
. It is also written af/an. If j;, + jyy + fzz = 0 in V, 

derive jj Ff/?n dS = 0 from the Divergence Theorem. 

19 Describe the closed surface S and outward normal n: 
(a) V = hollow ball 1 < x' + y2 + z2 < 9. 
(b) V = solid cylinder .u2 + y% 1. 1z1 < 7. 

(c) V=pyramid x 3 0 ,  2 ' 30 ,  z 3 0 ,  . u + 2 v + 3 + < 1 .  

(d) V = solid cone x2 + y2 < z2 < 1. 

20 Give an example where ISF-ndS is easier than 
div F dV. 
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21 Suppose F = M(x, y)i + Njx, y)j, R is a region in the xy 
plane, and (x, y, z) is in V if (x, y) is in R and JzJ $ 1. 

(a) Describe V and reduce IIIdiv F dV to a double 
integral. 
(b) Reduce F ndS to a line integral (check top, bottom, 
side). 
(c) Whose theorem says that the double integral equals 
the line integral? 

22 Is it possible to have F n = 0 at all points of S and also 
div F = 0 at all points in V? F = 0 is not allowed. 

23 Inside a solid ball (radius a, density 1, mass M = 4na3/3) 
the gravity field is F = - GMR/a3. 

(a) Check div F = - 4nG in Gauss's Law. 
(b) The force at the surface is the same as if the whole 
mass M were 
(c) Find a gradient field with div F = 6 in the ball p $ a 
and div F = 0 outside. 

24 The outward field F = R/p3 has magnitude IF( = l/p2. 
Through an area A on a sphere of radius p, the flux is 

. A spherical box has faces at p, and p2 with A = 
pf sin 4d4d9  and A = pi sin 4d$dO. Deduce that the flux 
out of the box is zero, which confirms div F = 0. 

25 In Gauss's Law, what charge distribution q(x, y, z) gives 
the unit field E = u,? What is the flux through the unit sphere? 

26 If a fluid with velocity V is incompressible (constant den- 
sity p), then its continuity equation reduces to . If it 
is irrotational then F = grad5 If it is both then f satisfies 

equation. 

27 True or false, with a good reason. 
(a) If jj F . ndS = 0 for every closed surface, F is constant. 
(b) If F = grad f then div F = 0. 
(c) If JFJ $ 1  at all points then IIj div F dV $ area of the 
surface S. 
(d) If JFJ $ 1 at all points then Jdiv FJ < 1 at all points. 

28 Write down statements E-F-G-H for source-free fields 
F(x, y, z) in three dimensions. In statement F, paths sharing 
the same endpoint become surfaces sharing the same bound- 
ary curve. In G, the stream function becomes a vector Jield 
such that F = curl g. 

29 Describe two different surfaces bounded by the circle 
x2 + y2 = 1, z = 0. The field F automatically has the same flux 
through both if 

30 The boundary of a bounded region R has no boundary. 
Draw a plane region and explain what that means. What does 
it mean for a solid ball? 

For the Divergence Theorem, the surface was closed. S was the boundary of V. 
Now the surface is not closed and S has its own boundary-a curve called C. We 
are back near the original setting for Green's Theorem (region bounded by curve, 
double integral equal to work integral). But Stokes' Theorem, also called Stokes's 
Theorem, is in three-dimensional space. There is a curved surface S bounded by a 
space curve C. This is our first integral around a space curve. 

The move to three dimensions brings a change in the vector field. The plane field 
F(x, y) = Mi + Nj becomes a space field F(x, y, z) = Mi + Nj + Pk. The work 
Mdx + Ndy now includes Pdz. The critical quantity in the double integral (it was 
aN/ax - aM/dy) must change too. We called this scalar quantity "curl F," but in 
reality it is only the third component of a vector. Stokes' Theorem needs all three 
components of that vector-which is curl F. 

DEFINITION The curl of a vector field F(x, y, z) = Mi + Nj + Pk is the vector field 
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The symbol V x F stands for a determinant that yields those six derivatives: 

curl F = V x F = I 2ldx dldy 2l2z I . 

The three products i  d/dy P and j dldz M and k dldx N have plus signs. The three 
products like k dldy M, down to the left, have minus signs. There is a cyclic symmetry. 
This determinant helps the memory, even if it looks and is illegal. A determinant is 
not supposed to have a row of vectors, a row of operators, and a row of functions. 

EXAMPLE 1 The plane field M(x,  y)i + N(x,  y)j has P = 0 and dM/az = 0 and 
dN/dz = 0. Only two terms survive: curl F = (aNldx-dM/ay)k. Back to Green. 

EXAMPLE 2 The cross product a x R is a spinfield S. Its axis is the fixed vector a = 
al i  + a,  j + a3k. The flow in Figure 15.23 turns around a, and its components are 

Our favorite spin field -yi + xj has (a,, a,, a,) = (0,0, 1 )  and its axis is a = k.  
The divergence of a spin field is M ,  + N ,  + P, = 0 + 0 + 0. Note how the divergence 

uses M, while the curl uses N ,  and P,. The curl of S is the vector 2a: 

This example begins to reveal the meaning of the curl. It measures the spin! The direc- 
tion of curl F is the axis of rotation-in this case along a. The magnitude of curl F is 
twice the speed of rotation. In this case lcurl FI = 2/al and the angular velocity is la]. 

R =x i  + y j  + _-k 

curl S = 2a curl R = 0 
div R = 3 

Fig. 15.23 Spin field S = a x R, position field R, velocity field (shear field) V = zi, any field F. 

EXAMPLE 3 (!!) Every gradient field F = Sf/?x i  + 2f / f y  j + ?Jli?z k has curl F = 0: 

Always fyz equals f,, . They cancel. Also f,, =f,, and f,,=f,, . So curl grad f = 0. 
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EXAMPLE 4 (twin of Example 3) The divergence of curl F is also automatically 
zero: 

Again the mixed derivatives give Pxy = Pyx and Nxz = Nzx and Mzy = Myz.  The terms 
cancel in pairs. In "curl grad" and "div curl", everything is arranged to give zero. 

I 456( The curl of the grackat of every f(x, y, a) is curl grad f = V x Vf = 0. 
Thx: divergence of tlae curl of every F4x, y, z) is div curl F = V V x F = 0. I 

The spin field S has no divergence. The position field R has no curl. R is the gradient 
of f = &x2 + y2 + z2). S is the curl of a suitable F. Then div S = div curl F and 
curl R = curl grad f are automatically zero. 

You correctly believe that curl F measures the "spin" of the field. You may expect 
that curl (F + G) is curl F + curl G. Also correct. Finally you may think that a field 
of parallel vectors has no spin. That is wrong. Example 5 has parallel vectors, but 
their different lengths produce spin. 

EXAMPLE 5 The field V = zi in the x direction has curl V = j in the y direction. 

If you put a wheel in the xz plane, thisfield will turn it. The velocity zi at the top of 
the wheel is greater than zi at the bottom (Figure 15.23~). So the top goes faster and 
the wheel rotates. The axis of rotation is curl V = j. The turning speed is ), because 
this curl has magnitude 1. 

Another velocity field v = - xk produces the same spin: curl v = j. The flow is in 
the z direction, it varies in the x direction, and the spin is in the y direction. Also 
interesting is V + v. The two "shear fields" add to a perfect spin field S = zi - xk, 
whose curl is 2j. 

THE MEANING OF CURL F 

Example 5 put a paddlewheel into the flow. This is possible for any vector field F, 
and it gives insight into curl F. The turning of the wheel (if it turns) depends on its 
location (x, y, z). The turning also depends on the orientation of the wheel. We could 
put it into a spin field, and if the wheel axis n is perpendicular to the spin axis a, the 
wheel won't turn! The general rule for turning speed is this: the angular velocity of 
the wheel is %curl F) n. This is the bbdirectional spin," just as (grad f )  o was the 
"directional derivative"-and n is a unit vector like u. 

There is no spin anywhere in a gradient field. It is irrotational: curl grad f = 0. 
The pure spin field a x R has curl F = 2a. The angular velocity is a n (note that 

) cancels 2). This turning is everywhere, not just at the origin. If you put a penny on 
a compact disk, it turns once when the disk rotates once. That spin is "around itself," 
and it is the same whether the penny is at the center or not. 

The turning speed is greatest when the wheel axis n lines up with the spin axis a. 
Then a n is the full length (a(. The gradient gives the direction of fastest growth, and 
the curl gives the direction of fastest turning: 

maximum growth rate off is lgrad f 1 in the direction of grad f 

maximum rotation rate of F is f lcurl FI in the direction of curl F. 
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STOKES' THEOREM

Finally we come to the big theorem. It will be like Green's Theorem-a line integral
equals a surface integral. The line integral is still the work f F* dR around a curve.
The surface integral in Green's Theorem is ff (Nx - M,) dx dy. The surface is flat (in
the xy plane). Its normal direction is k, and we now recognize Nx - My as the k
component of the curl. Green's Theorem uses only this component because the nor-
mal direction is always k. For Stokes' Theorem on a curved surface, we need all three
components of curl F.

Figure 15.24 shows a hat-shaped surface S and its boundary C (a closed curve).
Walking in the positive direction around C, with your head pointing in the direction
of n, the surface is on your left. You may be standing straight up (n = k in Green's
Theorem). You may even be upside down (n = - k is allowed). In that case you must
go the other way around C, to keep the two sides of equation (6) equal. The surface is
still on the left. A M6bius strip is not allowed, because its normal direction cannot be
established. The unit vector n determines the "counterclockwise direction" along C.

450 (Stokes' Theorem) F* dR = (curl F) ndS. (6)

The right side adds up small spins in the surface. The left side is the total circulation
(or work) around C. That is not easy to visualize-this may be the hardest theorem
in the book-but notice one simple conclusion. If curl F = 0 then f F . dR = 0. This
applies above all to gradient fields-as we know.

A gradient field has no curl, by (4). A gradient field does no work, by (6). In three
dimensions as in two dimensions, gradient fields are conservative fields. They will be
the focus of this section, after we outline a proof (or two proofs) of Stokes' Theorem.

The first proof shows why the theorem is true. The second proof shows that it
really is true (and how to compute). You may prefer the first.

First proof Figure 15.24 has a triangle ABC attached to a triangle ACD. Later there
can be more triangles. S will be piecewiseflat, close to a curved surface. Two triangles
are enough to make the point. In the plane of each triangle (they have different n's)
Green's Theorem is known:

4 F dR= ff curl F ndS ~ FdR= if curl F ndS.
AB+BC+CA ABC AC+CD+DA ACD

Now add. The right sides give ff curl F .ndS over the two triangles. On the left, the
integral over CA cancels the integral over AC. The "crosscut" disappears. That leaves
AB + BC + CD + DA. This line integral goes around the outer boundary C-which
is the left side of Stokes' Theorem.

A

Sn

B

ncur
D

Fig. 15.24 Surfaces S and boundary curves C. Change in B -+ curl E - current in C.
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Second proof Now the surface can be curved. A new proof may seem excessive, but 
it brings formulas you could compute with. From z = f(x, y) we have 

For ndS, see equation 15.4.1 1. With this dz, the line integral in Stokes' Theorem is 

8 F d~ = 8 M d~ + N dy + ~ ( a f l a ~  d~ + aflay dy). 
C shadow of C 

(7) 

The dot product of curl F and ndS gives the surface integral JJ curl F ndS: 
S 

To prove (7) = (8), change M in Green's Theorem to M + Paflax. Also change N to 
N + Paflay. Then (7) = (8) is Green's Theorem down on the shadow (Problem 47). 
This proves Stokes' Theorem up on S. Notice how Green's Theorem (flat surface) 
was the key to both proofs of Stokes' Theorem (curved surface). 

EXAMPLE 6 Stokes' Theorem in electricity and magnetism yields Faraday's Law. 

Stokes' Theorem is not heavily used for calculations-equation (8) shows why. But 
the spin or curl or vorticity of a flow is absolutely basic in fluid mechanics. The other 
important application, coming now, is to electric fields. Faraday's Law is to Gauss's 
Law as Stokes' Theorem is to the Divergence Theorem. 

Suppose the curve C is an actual wire. We can produce current along C by varying 
the magnetic field B(t). The flux q = JJ B ndS, passing within C and changing in time, 
creates an electric field E that does work: 

/. 

Faraday's Law (integral form): work = E dR = - dqldt. I 
That is physics. It may be true, it may be an approximation. Now comes mathematics 
(surely true), which turns this integral form into a differential equation. Information 
at points is more convenient than information around curves. Stokes converts the 
line integral of E into the surface integral of curl E: 

$ E m  dR = 11 curl E ndS and also - &plat = 55 - (aB/at) ndS. 
C S S 

These are equal for any curve C, however small. So the right sides are equal for any 
surface S. We squeeze to a point. The right hand sides give one of Maxwell's equations: 

Faraday's Law (differential form): curl E = - aBldt. 

CONSERVATIVE FIELDS AND POTENTIAL FUNCTIONS 

The chapter ends with our constant and important question: Which fields do no 
work around closed curves? Remember test D for plane curves and plane vector 
fields: 

if aM/dy = dN/dx then F is conservative and F = grad f and $ F - dR = 0. 

Now allow a three-dimensional field like F = 2xy i + (x2 + z)j + yk. Does it do work 
around a space curve? Or is it a gradient field? That will require aflax = 2xy and 
afjdy = x2 + z and af/az = y. We have three equations for one function f(x, y, z). 
Normally they can't be solved. When test D is passed (now it is the three-dimensional 
test: curl F = 0) they can be solved. This example passes test D, and f is x2y + yz. 
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ISP  F(x, y, z) = Mi + Nj + Pk is a conservative field if it has these properties: 
A. The work F da around every closed path in space is zero. 
B. The work f $F dR depends only on P and Q, not on the path in space. 
C. F is a graden? fild M = a f /ax and N = af/dy and P = df/az. 
D. The components satisfy My = N,, M, = P,, and N, = P, (curl F is zero). 
A field with one of these properties has them all. D is the quick test. 

A detailed proof of A * B =.> C * D * A is not needed. Only notice how C a D: 
curl grad F is always zero. The newest part is D * A. Ifcurl F = 0 then f F dR = 0. 
But that is not news. It is Stokes' Theorem. 

The interesting problem is to solve the three equations forf, when test D is passed. 
The example above had 

df/dx = 2xy f = 5 2xy dx = x2y plus any function C(y, z) 

dfldy = x2 + z = x2 + dC/dy C = yz plus any function C(Z) 

df/dz = y = y + dcldz c(z) can be zero. 

The first step leaves an arbitrary C(y, z) to fix the second step. The second step leaves 
an arbitrary c(z) to fix the third step (not needed here). Assembling the three steps, 
f = x2y + C = x2y + yz + c = x~~ + yz. Please recognize that the "fix-up" is only pos- 
sible when curl F = 0. Test D must be passed. 

EXAMPLE 7 Is F = (Z - y)i + (x - z)j + (y - x)k the gradient of any f ?  

Test D says no. This F is a spin field a x R. Its curl is 2a = (2,2,2), which is not zero. 
A search for f is bound to fail, but we can try. To match df/dx = z - y, we must have 
f = zx - yx + C(y, z). The y derivative is -x + dC/dy. That never matches N = x - z, 
so f can't exist. 

EXAMPLE 8 What choice of P makes F = yz2i + xz2j + Pk conservative? Findf: 

Solution We need curl F = 0, by test D. First check dM/dy = z2 = dNjdx. Also 

dP/dx = aM/dz = 2yz and dP/dy = dN/az = ~ X Z .  

P = 2xyz passes all tests. To find f we can solve the three equations, or notice that 
f = xyz2 is S U C C ~ S S ~ U ~ .  Its gradient is F. 

A third method defines f (x, y, z) as the work to reach (x, y, z) from (0,0,O). The path 
doesn't matter. For practice we integrate F dR = M dx + N dy + P dz along the 
straight line (xt, yt, zt): 

f ( ~ ,  y, Z) = So1 (y t ) (~t )~(x  dt) + (x t ) (~t )~(y  dt) + 2(xt)(yt)(zt)(z dl) = xyz2. 

EXAMPLE 9 Why is div curl grad f automatically zero (in two ways)? 

Solution First, curl grad f is zero (always). Second, div curl F is zero (always). Those 
are the key identities of vector calculus. We end with a review. 

Green's Theorem: (2N/?x - 2Ml2y)dx dy 

$F ndr = jj(ZM/dr + dN/Fy)dx dy 
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Divergence Theorem : 

Stokes' Theorem : 

Stokes' Theorem and the Curl of F 

F - d R  = curl F * n d S .  j? 
The first form of Green's Theorem leads to Stokes' Theorem. The second form 
becomes the Divergence Theorem. You may ask, why not go to three dimensions in 
the f i s t  place? The last two theorems contain the first two (take P = 0 and a flat 
surface). We could have reduced this chapter to two theorems, not four. I admit that, 
but a fundamental principle is involved: "It is easier to generalize than to specialize." 

For the same reason d f l d x  came before partial derivatives and the gradient. 

15.6 EXERCISES 

Read-through questions 

The curl of Mi + Nj + Pk. is the vector a . It equals the 
3 by 3 determinant b . The curl of x2i + z2k is c . 
For S = yi - (x + z)j + yk the curl is d . This S is a e 

field a x R =+(curl F) x R, with axis vector a = f . For 
any gradient field fxi +f, j + fzk the curl is 9 . That is the 
important identity curl grad f = h . It is based on f,, =f,, 
and i and i . The twin identity is k . 

The curl measures the I of a vector field. A pad- 
dlewheel in the field with its axis along n has turning speed 

m . The spin is greatest when n is in the direction of 
n . Then the angular velocity is 0 . 

Stokes' Theorem is P = q . The curve C is the 
r of the s S. This is t Theorem extended to 
u dimensions. Both sides are zero when F is a gradient 

field because v . 

The four properties of a conservative field are A = w , 
B = x , C = Y , D = . The field y2z2i + 2xy2zk 
(passes)(fails) test D. This field is the gradient off = A . 
The work J F  .dR from (O,0, 0) to (1, 1, 1) is B (on which 
path?). For every field 17, JJcurl F o n d s  is the same out 
through a pyramid and ulp through its base because c . 

Problems 1-6 find curl F. 

F = z i + x j + y k  2 F = grad(xeY sin z) 

F =(x +y+z)( i  + j + k) 4 F =(x  +y)i-(x +y)k 

F = pn(xi + yj + zk) 6 F = ( i + j ) x R  

Find a potential f for the field in Problem 3. 

Find a potential f for the field in Problem 5. 

When do the fields xmii and xnj have zero curl? 

When does (a,x + a2y + a,z)k have zero curl? 

In 11-14, compute curl F and find $,F0dR by Stokes' 
Theorem. 

12 F = i x R, C = circle x2 + z2 = 1, y = 0. 

13 F = (i + j) x R, C = circle y2 + z2 = 1, x = 0. 

14 F = (yi - xj) x (xi + yj), C = circle x2 + y2 = 1, z = 0. 

15 (important) Suppose two surfaces S and T have the same 
boundary C, and the direction around C is the same. 

(a) Prove JJ, curl F . ndS = flT curl F . ndS. 
(b) Second proof: The difference between those integrals is 
JJJdiv(cur1 F ) N  By what Theorem? What region is I/? 
Why is this integral zero? 

16 In 15, suppose S is the top half of the earth (n goes out) 
and T is the bottom half (n comes in). What are C and Ir! 
Show by example that IS, F ndS = 11, F ndS is not generally 
true. 

17 Explain why i[ curl F ndS = 0 over the closed boundary 
of any solid V. 

18 Suppose curl F = 0 and div F = 0. (a) Why is F the gradi- 
ent of a potential? (b) Why does the potential satisfy Laplace's 
equation f,, + f,, +f,, = O? 

In 19-22, find a potential f if it exists. 

21 F = ex-zi - ex-zk 22 F = yzi + xzj + (XY + z2)k 

23 Find a field with curl F = (1, 0,O). 

24 Find all fields with curl F = (1, 0,O). 

25 S = a x R is a spin field. Compute F = b x S (constant 
vector b) and find its curl. 
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26 How fast is a paddlewheel turned by the field F = yi - xk 
(a) if its axis direction is n = j? (b) if its axis is lined up with 
curl F? (c) if its axis is perpendicular to curl F? 

27 How is curl F related to the angular velocity o in the spin 
field F = a(- yi + xj)? How fast does a wheel spin, if it is in 
the plane x + y + z = l? 

28 Find a vector field F whose curl is S = yi - xj. 

29 Find a vector field F whose curl is S = a x R. 

30 True or false: when two vector fields have the same curl 
at all points: (a) their difference is a constant field (b) their 
difference is a gradient field (c) they have the same divergence. 

In 31-34, compute 11 curl F ndS over the top half of the sphere 
x2 + y2 + z2 = 1 and (separately) $ F . dR around the equator. 

35 The circle C in the plane x + y + z = 6 has radius r and 
center at (1,2, 3). The field F is 3zj + 2yk. Compute $ F  dR 
around C. 

36 S is the top half of the unit sphere and F = zi + xj + xyzk. 
Find 11 curl F . ndS. 

37 Find g(x, y) so that curl gk = yi + x2j. What is the name 
for g in Section 15.3? It exists because yi + x2j has zero 

38 Construct F so that curl F = 2xi + 3yj - 5zk (which has 
zero divergence). 

39 Split the field F = xyi into V + W with curl V = 0 and 
div W = 0. 

40 Ampere's law for a steady magnetic field B is curl B = pJ 
(J =current density, p = constant). Find the work done by B 
around a space curve C from the current passing through it. 

Maxwell allows varying currents which brings in the electric 
field. 

41 For F = (x2 + y2)i, compute curl (curl F) and grad (div F) 
and F,,+F,,+F,,. 

42 For F = v(x, y, z)i, prove these useful identities: 

(a) curl(cur1 F) = grad (div F) - (F,, + F,, + F,,). 

(b) curl( f F) = f curl F + (grad f )  x F. 

43 If B = a cos t (constant direction a), find curl E from Fara- 
day's Law. Then find the alternating spin field E. 

44 With G(x, y, z) = mi + nj + pk, write out F x G and take 
its divergence. Match the answer with G curl F - F . curl G. 

45 Write down Green's Theorem in the xz plane from Stokes' 
Theorem. 

True or false: V x F is perpendicular to F. 

(a) The second proof of Stokes' Theorem took M* = 

M(x, y, f (x, y)) + P(x, y, f (x, y))af/ ax as the M in Green's 
Theorem. Compute dM*/dy from the chain rule and pro- 
duct rule (there are five terms). 

(b) Similarly N* = N(x, y, f )  + P(x, y, f )df/dy has the x 
derivative N, + N, f, + P, f, + Pz f, f, + Pf,,. Check that 
N,* - M,* matches the right side of equation (S), as needed 
in the proof. 

"The shadow of the boundary is the boundary of the 
shadow." This fact was used in the second proof of Stokes' 
Theorem, going to Green's Theorem on the shadow. Give 
two examples of S and C and their shadows. 

49 Which integrals are equal when C = boundary of S or S = 

boundary of V? 

$ F dR $ (curl F)  . dR $(curl F) . nds 11 F n d ~  

11 div FdS 11 (curl F) ndS 11 (grad div F) . ndS 111 div F d V 

50 Draw the field V = - xk spinning a wheel in the xz plane. 
What wheels would not spin? 




